зонд установки для измерения содержания водорода в жидких металлах

Классы МПК:G01N7/10 путем создания условий для диффузии компонентов через пористую стенку и измерения разности давлений или объемов 
Автор(ы):, ,
Патентообладатель(и):Акционерное общество открытого типа "Всероссийский институт легких сплавов"
Приоритеты:
подача заявки:
1995-02-01
публикация патента:

Использование: исследование свойств расплавов, в частности, конструкции устройств, применяемых для определения содержания водорода в жидких металлах. Сущность изобретения: зонд установки для измерения содержания водорода в жидких металлах включает заглушенную с одной стороны палладиевым фильтром трубку с приваренной к ней вертикальной насадкой. Торец насадки выполнен с поперечным сечением, образующим острый угол к горизонтали. Палладиевый фильтр выполнен недоходящим до плоскости торца насадки. 1 ил., 1 табл.
Рисунок 1, Рисунок 2

Формула изобретения

Зонд установки для измерения содержания водорода в жидких металлах, включающий заглушенную снизу палладиевым фильтром вертикальную трубку с приваренной к ней соосно вертикальной насадкой с открытым нижним торцом, охватывающим трубку, подсоединенный к насадке снаружи патрубок для подачи аргона, отличающийся тем, что нижний торец насадки выполнен с поперечным сечением, образующим острый угол к горизонтали, а палладиевый фильтр размещен выше нижнего торца насадки.

Описание изобретения к патенту

Изобретение относится к исследованию свойств расплавов, в частности к конструкциям устройств, применяемых для определения содержания водорода в жидких металлах.

Один из часто применяемых методов определения содержания водорода в металлических расплавах заключается в измерении парциального давления водорода в статическом пузырьке погруженного в расплав зонда после установления равновесия между водородом в объеме зонда и растворенном в металле. При этом аналитические возможности метода в значительной степени определяются особенностями конструкции контактирующего с расплавом зонда.

Известен зонд устройства для определения содержания водорода в расплаве, состоящий из пористого графитового фильтра, герметично присоединенного к вакуумируемому измерительному объему [1]

Недостаткоами существующего зонда являются низкая скорость проникновения водорода через фильтр, а также возможность попадания в измерительную систему посторонней газовой фазы, искажающей результаты анализа, что приводит к необходимости длительной дегазации зонда и проведения неоднократных холостых замеров.

Для устранения этих недостатков применяют зонд, состоящий из стальной трубки, заглушенной с одного конца палладиевым фильтром и соединенной с другого конца с вакуумметром; в прилегающей к фильтру части к трубке приварена насадка, внутренний объем которой образует статический газовый пузырь при погружении зонда в расплав [2]

Недостатком известного зонда является получение значительно заниженных результатов анализа жидких алюминиевых сплавов особенно с невысокими концентрациями водорода в сравнении с результатами определения, полученными методом вакуум-нагрева, считающимся в настоящее время эталонным методом определения водорода в твердых алюминиевых сплавах.

Предлагается зонд установки для измерения содержания водорода в жидких металлах, состоящий из заглушенной с одной стороны палладиевым фильтром трубки, к которой вблизи фильтра приварена вертикально насадка. Торец насадки выполнен в форме косого среза относительно продольной оси насадки, так что поперечное сечение торца насадки образует острый угол к горизонтали. При этом палладиевый фильтр выполнен недоходящим до плоскости торца насадки.

Предлагаемый зонд отличается от прототипа тем, что торец насадки выполнен с поперечным сечением, образующим острый угол к горизонтали, а палладиевый фильтр выполнен недоходящим до плоскости торца насадки.

Техническим результатом применения предлагаемого зонда является значительное увеличение площади контакта расплава с внутренним объемом насадки при одновременном снижении степени окисления поверхности раздела расплав - инертный газ, что приводит к ускорению достижения равновесного давления водорода в аналитическом объеме установки и позволяет повысить точность анализа за счет снижения влияния дегазации исследуемого расплава в процессе анализа.

Выбор конкретных признаков предлагаемого зонда объясняется следующим. После погружения в анализируемый расплав предлагаемого зонда и размещения плоскости среза насадки параллельно поверхности расплава, как и в прототипе, площадь контакта расплава с газовым пузырем внутри насадки возрастает по сравнению с насадкой с прямым срезом (как в прототипе) по чисто геометрическим причинам, при этом увеличение поверхности раздела расплав-пузырь происходит без увеличения объема газового пузыря и, кроме того, дополнительно образующаяся поверхность раздела полностью свободна от оксидного слоя, так как внутри насадки находится предварительно напущенный в нее инертный газ, например аргон. Положительный эффект использования предлагаемого зонда достигается при любых значениях острого угла зонд установки для измерения содержания водорода в жидких   металлах, патент № 2078330 между плоскостью торца вертикальной насадки и горизонталью, при этом величина эффекта возрастает с ростом этого угла; предельное (оптимальное) значение угла a подбирается в каждом конкретном случае в зависимости от размеров применяемого тигля для анализируемого расплава и термостата так, чтобы при требуемом рабочем наклоне зонда все его коммуникации вписывались в габариты тигля и термостата.

Выполнение палладиевого фильтра недоходящим до плоскости торца насадки также способствует увеличению площади контакта расплав-пузырь за счет исключения защитного чехла с палладиевым фильтром внутри него, что позволяет также ускорить достижение равновесного давления водорода в аналитическом объеме установки, что позволяет повысить точность анализа.

На чертеже показан предлагаемый зонд, разрез.

Зонд включает в себя вертикальную трубку 1, заглушенную с одной стороны палладиевым фильтром 2 и соединенную с другой стороны с вакуумметром (не показан). Вблизи палладиевого фильтра 2 к трубке 1 приварена насадка 3 с линией напуска инертного газа во внутреннюю полость насадки 3. Торец насадки 3 выполнен по плоскости косого среза под непрямым углом к продольной оси насадки 3, то есть под острым углом к горизонтали. Палладиевый фильтр 2 выполнен недоходящим до плоскости среза насадки, то есть он не пересекает плоскости торца насадки 3.

Предлагаемый зонд работает следующим образом. Перед началом анализа заглушенную палладиевым фильтром 2 трубку 1 вакуумируют форвакуумным насосом (не показан) и после достижения необходимого вакуума отсекают от вакуумной откачки. Затем зонд погружают вертикально вдоль оси насадки 3 в анализируемый расплав на такую глубину, чтобы образующаяся внутри насадки 3 полость была соединена с атмосферой небольшим отверстием (для выхода инертного газа), после чего в течение нескольких секунд накладку 3 продувают инертным газом через линию подачи инертного газа. Затем зонд заглубляют в расплав настолько, чтобы палладиевый фильтр 2 смог разогреться до температуры, близкой к температуре расплава, подачу инертного газа прекращают и поворачивают зонд таким образом, чтобы плоскость среза торца насадки 3 установилась параллельно поверхности расплава в тигле. Водород из расплава диффундирует во внутреннюю полость насадки 3 и далее через палладиевый фильтр 2 и трубку 1 в датчик вакуумметра (не показан). После достижения установившегося равновесного давления водорода его величину регистрируют и по соответствующим уравнениям растворимости для анализируемого сплава при заданной температуре анализа вычисляют значение концентрации водорода в расплаве.

Был опробован макет предлагаемого зонда установки для измерения содержания водорода в жидких металлах. Проведено определение содержания водорода в жидком алюминиевом сплаве 1201 с помощью установки для определения содержания водорода в жидких металлах с использованием предлагаемого и известного зондов. Температура анализа составляла 720oC. Из каждой анализированной пробы расплава (по 2 параллельных в каждом случае) отбирались образцы отливкой в изложницу Рэнсли для сравнительного анализа методом вакуум-нагрева. Полученные результаты представлены в таблице.

Как видно из представленных в таблице результатов, использование предлагаемого зонда обеспечивает повышение точности и экспрессности определения содержания водорода в расплавах.

Класс G01N7/10 путем создания условий для диффузии компонентов через пористую стенку и измерения разности давлений или объемов 

способ приготовления парогазовых смесей для градуировки газоанализаторов -  патент 2310825 (20.11.2007)
универсальный рабочий столик для определения воздухопроницаемости объемных материалов -  патент 2194971 (20.12.2002)
устройство для контроля скважности силосной массы в горизонтальных силосных хранилищах -  патент 2169456 (27.06.2001)
способ определения воздухопроницаемости объемных материалов -  патент 2165609 (20.04.2001)
способ экологического мониторинга органических соединений и устройство для его осуществления -  патент 2146811 (20.03.2000)
способ определения газопроницаемости полимерных пленок -  патент 2091755 (27.09.1997)
Наверх