способ получения синглетного кислорода
Классы МПК: | H01S3/095 с использованием химической или термической подкачки H01S3/225 содержащим эксимеры или эксиплексы |
Автор(ы): | Зимин В.И. |
Патентообладатель(и): | Всероссийский научно-исследовательский институт экспериментальной физики, Министерство РФ атомной энергии |
Приоритеты: |
подача заявки:
1993-11-12 публикация патента:
27.11.1996 |
Использование: способ относится к получению синглетного кислорода преимущественно для химического иодно-кислородного лазера непрерывного действия многоцелевого назначения. Сущность изобретения: в способе получения синглетного кислорода, который включает абсорбцию газообразного кислорода жидким раствором и содержит восстановленную форму окислителя, электрохимическое восстановление растворенного кислорода до супероксида O-2, а также электрохимическое окисление восстановленной формы окислителя и окисление полученным продуктом супероксида O-2 до синглетного кислорода O2(1
g), выводимого затем в приемник, в качестве восстановленной формы окислителя используют анионы хлора Cl- в неорганическом растворителе, а в качестве приемника - газовую фазу над поверхностью жидкого раствора, не являющуюся абсорбирующей для газообразного кислорода.

Формула изобретения
Способ получения синглетного кислорода преимущественно для химического иодно-кислородного лазера непрерывного действия, включающий абсорбцию газообразного кислорода жидким раствором, содержащим восстановленную форму окислителя, электрохимическое восстановление растворенного кислорода до супероксида O-2, электрохимическое одноэлектронное окисление восстановленной формы окислителя и окисление полученным продуктом супероксида O-2 до синглетного кислорода O2(1
Описание изобретения к патенту
Изобретение относится к квантовой электронике, преимущественно к химическим лазерам непрерывного действия, и может быть использовано при создании иодно-кислородного лазера многоцелевого назначения для получения синглетного кислорода энергоносителя лазеров этого типа. Известны способы получения синглетного кислорода для химического иодно-кислородного лазера непрерывного действия, в основу которых положена гетерогенная реакция хлорирования щелочного раствора пероксида водорода, одним из продуктов которой является синглетный кислород O2(1
HO-2+Cl2___


(см. например, W.E. McDermott. The Generation of Singlet Delta Oxygen. A Technology Overview. Rocketdyne Division, Rockwell International. Canoga Park, CA 91303, 1992). Анализ состава щелочного раствора пероксида водорода, механизм получения которого можно представить уравнением:

где Ме щелочной металл (калий или натрий), показывает, что щелочные растворы пероксида водорода используют в качестве источника анионов пергидроксила HO-2, образующихся в результате кислотной ионной диссоциации слабой кислоты, каковой является пероксид водорода Н2O2, при ее нейтрализации сильным основанием МеОН. По существу, роль используемого сильного основания МеОН сводится к инициированию кислотной ионной диссоциации пероксида водорода Н2O2. Неизбежным следствием этого при последующем хлорировании является насыщение раствора хлоридом щелочного металла, который в данном случае представляет собой шлак, отравляющий жидкий реагент химической реакции и делающий его в конце концов непригодным к дальнейшему использованию. Кроме того, известны экспериментальные исследования, в процессе проведения которых наблюдался возбужденный (синглетный) кислород, образование которого по одной из версий объяснялось окислением супероксида O-2 участвующим в реакции соответствующим реагентом-окислителем (см. например, R.W. Murray. Chemical Sources of Singlet Oxygen. In "Organic Chemistry. v.40. Singlet Oxygen" (H. H. Wasserman, ed.). Academic Press. N-Y, S-Francisco, London, 1979). Наиболее близким по технической сущности к предлагаемому способу получения синглетного кислорода является способ, включающий абсорбцию газообразного кислорода жидким раствором, содержащим молекулы ферроцена (С5H5)2Fe, электрохимическое восстановление растворенного кислорода до супероксида O-2, электрохимическое окисление молекул ферроцена до катионов [(C5H5)2Fe]+ и окисление последними супероксида O-2 до синглетного кислорода O2(1


соответствующей образованию этого вещества, должен понижать упомянутую характеристику жидкого раствора. К тому же ацетонитрил токсичен; предполагается, что предельно-допустимая концентрация ацетонитрила в воздухе составляет 0,002% Кроме того, наличие в системе органических реагентов в контакте с кислородом должно существенно повышать взрыво- и пожароопасность системы. При разработке предлагаемого способа решалась задача, связанная с исключением условий, приводящих к насыщению генерируемого потока синглетного кислорода примесями потенциальными тушителями компонентов активной среды лазера, и поиском условий, обеспечивающих стабильное состояние электролита в процессе работы электрохимической системы. Сущность изобретения заключается в том, что в известном способе получения синглетного кислорода, включающем абсорбцию газообразного кислорода жидким раствором, содержащим восстановленную форму окислителя, электрохимическое восстановление растворенного кислорода до супероксида O-2, электрохимическое одноэлектронное окисление восстановленной формы окислителя и окисление полученным продуктом супероксида O-2 до синглетного кислорода O2(1



в то время, как у супероксида O-2 окислительная способность значительно ниже
O-2+ 0,44 эВ ___

где символ * обозначает возбужденное синглетное состояние. Эффективно решена в предлагаемом способе и проблема очищения генерируемого потока синглетного кислорода от примесей потенциальных тушителей компонентов активной среды оптического резонатора лазера, так как в процессе становления равновесного состояния между жидкой и газовой фазами системы в поток синглетного кислорода будут подмешиваться в заметных количествах наряду с парами растворителя только пары хлора, частично диссоциированного и ионизированного. По грубым оценкам парциальное давление паров хлора при этом будет на два порядка ниже парциального давления паров растворителя. Технический результат, получаемый предложенной совокупностью признаков и выражающийся в генерации потока синглетного кислорода O2(1


Класс H01S3/095 с использованием химической или термической подкачки
Класс H01S3/225 содержащим эксимеры или эксиплексы