способ электрошлакового переплава порошкообразных материалов
Классы МПК: | C22B9/18 электрошлаковая переплавка |
Автор(ы): | Волков А.Е., Лактионов А.В., Шалимов А.Г., Мончинский Д.Б., Бедрин Н.И., Гесс О.С., Волк Л.П. |
Патентообладатель(и): | Центральный научно-исследовательский институт черной металлургии им.И.П.Бардина |
Приоритеты: |
подача заявки:
1991-06-13 публикация патента:
27.10.1996 |
Использование: в металлургии, в частности в производстве металла способом электрошлакового переплава. Сущность изобретения: одновременно с порошкообразными материалами в шлаковую ванну подают металлические материалы, содержащие восстановительные элементы, типа Al, Si, Ti со скоростью 1 - 5 % от скорости подачи порошкообразных материалов, и с фракционным составом 1 - 5 мм. Содержание восстановительных элементов в металлических материалах составляет 10 - 50 %. 1 з. п. ф-лы, 1 табл.
Рисунок 1
Формула изобретения
1. Способ электрошлакового переплава порошкообразных материалов, включающий подачу порошкообразных материалов в шлаковую ванну и их переплав, отличающийся тем, что, с целью повышения производительности процесса и выхода годного металла, одновременно с порошкообразными материалами в шлаковую ванну подают металлические материалы, содержащие восстановительные элементы Al, Si, Ti, со скоростью подачи 1 5% от скорости подачи порошкообразных материалов и фракционным составом 1 5 мм. 2. Способ по п.1, отличающийся тем, что содержание восстановительных элементов в металлических материалах составляет 10 50%Описание изобретения к патенту
Изобретение относится к металлургии, в частности к производству металла методом электрошлакового переплава (ЭШП). В настоящее время одним из важных направлений развития электрошлаковой технологии является получение марочной стали из некомпактных материалов. Сущность процесса ЭШП заключается в переплаве расходуемого электрода в рафинировочном шлаке, находящимся в охлаждаемом кристаллизаторе. Переплав некомпактных материалов методом ЭШП можно осуществлять, предварительно их компактируя в электрод, например, пресованием порошкообразных материалов, состав которых соответствует заданному составу выплавляемого металла (заявка ФРГ N 2834436 "Электрод", опублик. в журнале "Изобретения в СССР и за рубежом", 1980, N 7, вып. 63). Недостатком этого способа является высокая трудоемкость подготовительных операций. Затраты на изготовление расходуемых электродов из некомпактных материалов превышают 40 60 в структуре себестоимости электрошлакового слитка. Наиболее близким к изобретению по технической сущности и достигаемым результатам является способ электрошлакового переплава некомпактных материалов, в том числе металлоабразивной пыли, металлических порошков, шламов, при котором эти материалы с помощью дозаторов подают непосредственно в жидкую шлаковую ванну, находящуюся в охлаждаемом кристаллизаторе и нагреваемую с помощью неплавящихся электродов ("Сталь", 1990, N 12, с. 22 25). Формируемый под слоем шлака металлический слиток содержит практически все легирующие элементы, которые были в шихтовых материалах. Недостаток этого способа заключается в том, что содержащиеся в абразивной пыли мелкие металлические частицы очень медленно осаждаются в шлаковой ванне, из-за чего скорость наплавления слитка снижается в 2 3 раза по сравнению с плавкой более крупных частиц. Низкая скорость осаждения частиц порошкообразных материалов приводит также к снижению выхода годного в конечном шлаке содержится (по массе) до 60 металлической составляющей. Цель изобретения повышение производительности процесса и выхода годного материала. Цель достигается тем, что вместе с металлизованными порошкообразными материалами в жидкий шлак подают металлические материалы (лигатуры) фракций 1 5 мм, содержащие восстановительные элементы, например, Al, Si, Ti в количестве достаточном для расплавления этих материалов за счет тепла экзотермических реакций окисления этих элементов, причем скорость подачи металлических материалов составляет 1 5 от скорости подачи порошкообразных металлизованных материалов. Новизна усматривается также в том, что содержание восстановительных элементов в металлических материалах составляет 10 50 Вышеперечисленные отличительные от прототипа признаки обуславливают соответствие предлагаемого технического решения критерию "новизна". По каждому отличительному признаку проведен поиск известных решений со сходными признаками, выполняющими аналогичную функцию по научно-технической литературе и патентной документации. Отсутствие таких решений свидетельствует о соответствии предложенного технического решения критерию "существенные отличия". Сущность изобретения состоит в том, что присаживаемые вместе с порошкообразными металлизированными материалами металлические гранулы (лигатура) размером 1 5 мм расплавляются в верхних слоях шлаковой ванны (за счет экзотермической реакции окисления содержащихся в их составе активных элементов) и, опускаясь в шлаковой ванне, обеспечивают коагуляцию мелких частиц металлизованных материалов. При этом общая скорость опускания металлических капель определяется скоростью опускания частиц крупных фракций. Математическое обоснование этого процесса следующее. Скорость опускания мелких частиц металла в шлаке можно оценить по формуле Стокса
где v скорость опускания частиц;
g ускорение силы тяжести;
R радиус частицы;




где



K константа Больцмана;
T температура;
ri и rj радиусы частиц в шлаке. При всех прочих равных условиях

P

где Р тепло, ккал/мм, необходимое для плавления подаваемой лигатуры;
Gлиг весовая скорость подачи лигатуры кт/мм;
C теплоемкость лигатуры;
q скрытая теплота плавления;
tпл температура плавления лигатуры;
to начальная температура лигатуры при ее попадании в шлак. Количество выделяющегося тепла при окислении таких элементов, как Al, Si, Ti, рассчитывается по термодинамическим параметрам соответствующих реакций. Например, для Al
2Al+3FeO = Al2O3+3Fe+

По справочникам определяем



Pуд


Поскольку



Решением управления (4) получаем минимальное содержание Аl в лигатуре, необходимое для ее плавления за счет тепла экзотермических реакций, таким же образом по справочным данным рассчитываются необходимое содержание в лигатуре других активных элементов, либо комбинаций этих элементов. Кроме высокоактивных элементов-раскислителей в лигатуре может содержаться железо, а также легирующие компоненты, которые обеспечивают попадание получаемого металла в заданный химический состав, например, если в абразивной пыли в результате ее смешивания с отходами менее легированной стали содержание компонентов ниже уровня марочного состава. Оптимальность предлагаемых параметров подтверждена в ходе проведения серии опытных плавок. Пример конкретного осуществления. Плавки проводили на стандартной электрошлаковой установке ЭШП 0,25 ВГЛ, дополнительно оснащенный системой дозирования и ввода в кристаллизатор сыпучих компонентов, кристаллизатор

без подачи лигатуры или при содержании Al в лигатуре менее 10 даже при низкой скорости подачи абразивного порошка не удалось получить полного слитка, выход годного составлял 60 65 (плавки 1 и 2);
подачи лигатуры с 10 Al со скоростью около 1 от скорости подачи абразивного порошка и лигатуры мелкой фракции также не привела к положительным результатам (плавки 3 4);
использование крупной лигатуры фракцией более 5 мм не обеспечивает требуемую равномерность ее подачи в результате чего возникает выливание шлака и появление дуговых разрядов (плавка 7);
присадка лигатуры в количестве более 5 от массы абразивной пыли не приводит к дальнейшему повышению выхода годного (плавки 8 и 9);
использование лигатуры с содержанием Al 10 60 а также лигатуры, содержащей кроме алюминия кремний и марганец, в количестве 2 5,0 от массы абразивной пыли позволило увеличить скорость плавки в 2,0 раза, а выход годного до 90 Таким образом, по сравнению с известным способом электрошлакового переплава порошкообразных материалов, предложенное техническое решение обеспечивает повышение выхода годного с 60 70 до 90 и производительности процесса в 2 раза. При этом экономический эффект только за счет повышения выхода годного при переплаве абразивной пыли стали Р6М5 составляет не менее Э 200


Класс C22B9/18 электрошлаковая переплавка