способ измерения флюенса термоядерных нейтронов

Классы МПК:G01T3/06 с помощью сцинтилляционных детекторов
G01T1/20 с помощью сцинтилляционных детекторов 
G01T1/36 измерение спектрального распределения рентгеновских лучей или корпускулярных излучений 
Автор(ы):, , ,
Патентообладатель(и):Войсковая часть 51105
Приоритеты:
подача заявки:
1994-03-29
публикация патента:

Использование: в технике измерения параметров ионизирующих излучений, в частности при радиационных исследованиях на генераторах термоядерных нейтронов, для повышения точности измерений оперативности получения конечных результатов, а также для упрощения процесса измерений. Сущность изобретения: с помощью сцинтилляционного спектрометра с органическим кристаллом измеряют аппаратурные спектры без разделения нейтронного и гамма-излучений при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла. При этом дискриминируют все сигналы с амплитудами меньшими, чем от протонов отдачи с максимальной энергией Ер = 14 МэВ. Флюенс термоядерных нейтронов определяют из математического выражения, основанного на поканальном суммировании разности полученных аппаратурных спектров. 1 ил.
Рисунок 1

Формула изобретения

Способ измерения флюенса термоядерных нейтронов, основанный на регистрации нейтронов и сопутствующего гамма-излучения с помощью сцинтилляционного спектрометра с органическим кристаллом, получении сигналов в виде импульсов тока с амплитудой, пропорциональной энергии нейтронов и гамма-квантов, дискриминации импульсов с амплитудами, пропорциональными более низким энергиям нейтронов и гамма-квантов, отличающийся тем, что измеряют аппаратурные спектры без разделения нейтронного и гамма-излучений при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла, дискриминируют при этом все сигналы с амплитудами меньшими, чем от протонов отдачи с максимальной энергией Ер=14 МэВ, а флюенс термоядерных нейтронов определяют из выражения

способ измерения флюенса термоядерных нейтронов, патент № 2065181

где Ф флюенс термоядерных нейтронов;

К постоянный коэффициент, зависящий от геометрии размещения, размеров и анизотропных свойств кристалла, определяется при калибровке спектрометра;

Nmiax, Nmiin аппаратурные спектры при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла;

i номер канала анализатора,

iпор номер канала анализатора, соответствующий порогу дискриминации.

Описание изобретения к патенту

Изобретение относится к технике измерения параметров ионизирующих излучений и может быть использовано при радиационных исследованиях с применением источников термоядерных нейтронов нейтронных генераторов.

Известен широкий набор способов регистрации нейтронов различных энергий, которые используют в том числе и для измерения флюенса нейтронов с Еn 14 МэВ. К ним относятся, например, применение пропорциональных счетчиков, камер деления [1] всеволнового счетчика Мак-Киббена [2] и др.

Недостатки способов низкая точность измерения нейтронов с энергией Еn 14 МэВ из-за чувствительности к нейтронам других энергий и сопутствующему гамма-излучению. Поэтому их использование для решения ряда задач, например для мониторирования выхода генераторов термоядерных нейтронов в условиях размещения вокруг мишенного блока разнотипных исследуемых объектов, практически невозможно.

Очевидно, что наиболее точным способом измерения флюенса термоядерных нейтронов является такой, при котором на фоне сопутствующего гамма-излучения выявляется пик нейтронов с энергией Еn 14 МэВ и регистрируется число нейтронов в этом пике.

Наиболее близким по технической сущности и достигаемому результату к данному способу является способ, в котором используется сцинтилляционный спектрометр с органическим кристаллом [3] Суть известного способа заключается в следующем.

При упругом рассеянии нейтронов и гамма-квантов в органическом кристалле возникают протоны отдачи и электроны соответственно, которые в свою очередь вызывают в веществе детектора сцинтилляции световые вспышки, амплитуда которых однозначно связана с энергиями протонов и электронов. Световая вспышка преобразуется с помощью фотоэлектронного умножителя (ФЗУ) в электрический импульс, который усиливается и регистрируется затем многоканальным амплитудным анализатором. Существуют специфические особенности световой вспышки, вызванной протоном или электроном, используя которые разделяют нейтронную и гамма-компоненту излучения. В многоканальном амплитудном анализаторе получают аппаратурные спектры нейтронного и гамма-излучений. Затем, используя достаточно сложные математические методы обработки, из аппаратурных спектров восстанавливают нейтронные и гамма-спектры. По площади пика нейтронов с энергией Еn 14 МэВ определяют флюенс термоядерных нейтронов в месте размещения детектора.

Недостатком этого способа является использование сложной математической обработки для восстановления нейтронного и гамма-спектров, что понижает точность измерений и оперативность получения конечных результатов. Кроме того, многоканальный амплитудный анализатор имеет ограничение по интенсивности загрузки. В данном способе интенсивность загрузки в основном определяется сигналами, вызванными нейтронами более низких энергий, поэтому часть аппаратурного спектра, соответствующая нейтронам с энергией Еn 14 МэВ, имеет малую статистику, что также понижает точность конечных результатов и значительно увеличивает время, необходимое для проведения измерений.

Изобретение направлено на повышение точности и оперативности получения конечных результатов, упрощение процесса измерений.

Технический результат достигается тем, что измеряют аппаратурные спектры без разделения нейтронного и гамма-излучений при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла, дискриминируют при этом все сигналы с амплитудами меньшими, чем от протонов отдачи с максимальной энергией Ер 14 МэВ, а флюенс термоядерных нейтронов определяют из выражения:

способ измерения флюенса термоядерных нейтронов, патент № 2065181

где способ измерения флюенса термоядерных нейтронов, патент № 2065181 флюенс термоядерных нейтронов;

к постоянный коэффициент, зависящий от геометрии размещения, размеров и анизотропных свойств кристалла, определяется при калибровке спектрометра;

Nmiax, Nmiin- аппаратурные спектры при размещении кристалла под углами по отношению к направлению на источник, соответствующими максимальному и минимальному значениям эффекта угловой анизотропии световыхода кристалла;

i номер канала анализатора;

iпор номер канала анализатора, соответствующий порогу дискриминации.

Cущность способа поясняется чертежом.

На чертеже представлены аппаратурные спектры исходящего гамма-нейтронного излучения, измеренного с помощью сцинтилляционного спектрометра вблизи мишенного блока генератора термоядерных нейтронов. Кривая 1 соответствует размещению кристалла под углом 90 o, а кривая 2 под углом 0o по отношению направлению на источник. При этом измерения проводятся за одно и тоже время и на одинаковом уровне мощности. Различие хода кривых объясняется эффектом угловой анизотропии световыхода кристалла зависимостью световыхода от угла движения ионизирующих частиц в кристалле относительно главной оси. Этот эффект для нейтронов в области энергии Еn 14 МэВ составляет 18.20%

Для сцинтилляционного спектрометра эффект угловой анизотропии носит характер изменения амплитуды импульсов на аноде ФЗУ, а следовательно, и коэффициента усиления. Поскольку интенсивность излучения в обоих случаях одинакова, то очевидно, что площади под кривыми 1 и 2 будут равны. Выбирают порог дискриминации таким образом, чтобы выделить импульсы, соответствующие протонам отдачи с максимальной энергией Eр 14 МэВ (на фиг.1 справа от точки А). В этом случае загрузка регистрирующей аппаратуры анализатора будет вызвана только сигналами от нейтронов с энергией Еn 14 МэВ. Вычитая аппаратурный спектр Nmin при размещении кристалла под углом 0o (эффект угловой анизотропии кристалла минимальный) из аппаратурного спектра Nmax при размещении кристалла под углом 90 o (эффект угловой анизотропии кристалла максимальный) по отношению к направлению на источник соответственно получают колоколообразный пик, площадь которого пропорциональна флюенсу термоядерных нейтронов. На чертеже она заштрихована. Коэффициент пропорциональности, зависящий от геометрии размещения, размеров и анизотропных свойств кристалла, определяют при градуировке спектрометра.

Возможность использования аппаратурных спектров без разделения нейтронной и гамма-компонент излучений объясняется следующим. Поскольку при мониторировании выхода термоядерных нейтронов спектрометр размещают вблизи от источника и доля гамма-квантов, от которых амплитуда импульса сравнима с амплитудой импульса от нейтронов с энергией Еn 14 МэВ, в суммарном спектре невелика и составляет менее 10% а эффект угловой анизотропии от гамма-квантов составляет 1.3% то гамма-компонентой излучений в области, лежащей выше порога дискриминации (правее т.А), можно пренебречь.

Данный способ позволяет:

исключить операции разделения нейтронной и гамма-компонент излучений и формирования управляющего сигнала, тем самым упростить процесс измерения;

увеличить загрузку регистрирующей аппаратуры анализатора по нейтронам с энергией Еn 14 МэВ, тем самым уменьшить время набора аппаратурных спектров и повысить точность измерения за счет уменьшения статистической составляющей погрешности конечных результатов;

исключить математическую обработку аппаратурных спектров, тем самым по совокупности с п.2 повысить точность измерений и оперативность конечных результатов.

Cпособ осуществляется следующим образом. C помощью сцинтилляционного спектрометра, состоящего, например, из монокристалла стильбена размером 40х40 мм, ФЭУ-93 и многоканального амплитудного анализатора АИ-1024-95, измеряют аппаратурный спектр при размещении кристалла под углом 0o по отношению к направлению на источник. При этом выставляют уровень дискриминации такой, чтобы загрузка анализатора производилась сигналами с амплитудами, соответствующими протонам отдачи с максимальной энергией Eр=14 МэВ (окончание плато аппаратурного спектра). Затем за тоже время и при том же уровне дискриминации измеряют аппаратурный спектр при размещении кристалла под углом 90 o по отношению к направлению на источник. Используя выражение (1), определяют флюенс термоядерных нейтронов. Коэффициент пропорциональности (к), используемый в выражении (1), определяют перед началом измерений в процессе калибровки спектрометра для конкретного его месторасположения.

Класс G01T3/06 с помощью сцинтилляционных детекторов

сцинтилляционный материал и соответствующий спектральный фильтр -  патент 2519131 (10.06.2014)
способ измерения интенсивности излучения -  патент 2505841 (27.01.2014)
устройство и способ для детектирования нейтронов посредством калориметрии на основе гамма-захвата -  патент 2502088 (20.12.2013)
устройство и способ для детектирования нейтронов с помощью поглощающих нейтроны калориметрических гамма-детекторов -  патент 2501040 (10.12.2013)
сцинтиллятор для детектирования нейтронов и нейтронный детектор -  патент 2494416 (27.09.2013)
герметически закрытая компоновка и нейтронное экранирование для детекторов радиоактивного излучения сцинтилляционного типа -  патент 2481598 (10.05.2013)
сцинтилляционный детектор -  патент 2449319 (27.04.2012)
годоскоп -  патент 2416112 (10.04.2011)
твердотельный детектор нейтронов -  патент 2413246 (27.02.2011)
сцинтилляционный детектор нейтронов -  патент 2412453 (20.02.2011)

Класс G01T1/20 с помощью сцинтилляционных детекторов 

способ регистрации характеристик ионизирующего излучения и устройство для его осуществления -  патент 2529447 (27.09.2014)
усовершенствованная температурная компенсация и схема управления для однофотонных счетчиков -  патент 2518589 (10.06.2014)
детектор излучения -  патент 2516614 (20.05.2014)
способ сборки ячеистого радиационного детектора -  патент 2510520 (27.03.2014)
детектор спектральной визуализации -  патент 2505840 (27.01.2014)
спектральная компьютерная томография -  патент 2505268 (27.01.2014)
оболочка для гигроскопического сцинтилляционного кристалла для ядерного построения изображений -  патент 2503974 (10.01.2014)
экран-преобразователь излучений -  патент 2503973 (10.01.2014)
люминесцирующая поликарбонатная пленка для белых светодиодов и детекторов -  патент 2499329 (20.11.2013)
сцинтилляционный материал на основе zno-керамики, способ его получения и сцинтиллятор -  патент 2499281 (20.11.2013)

Класс G01T1/36 измерение спектрального распределения рентгеновских лучей или корпускулярных излучений 

способ определения параметров ионизирующего воздействия на исследуемый образец импульсного высокоинтенсивного излучения -  патент 2507541 (20.02.2014)
способ и система обнаружения радиации с использованием многоканального спектрометра и устройство для обработки данных -  патент 2417386 (27.04.2011)
способ спектроскопии электромагнитной волны/пучка частиц и прибор для спектроскопии электромагнитной волны/пучка частиц -  патент 2416111 (10.04.2011)
способ увеличения быстродействия спектрометров ионизирующих излучений с полупроводниковыми и другими детекторами без внутреннего усиления -  патент 2392642 (20.06.2010)
портативная рентгеновская детекторная пластина с амортизацией удара -  патент 2391683 (10.06.2010)
гамма-резонансный узел мессбауэровского спектрометра -  патент 2353951 (27.04.2009)
мессбауэровский криостат с подвижным поглотителем гамма-излучения -  патент 2351952 (10.04.2009)
волновая дисперсивная рентгенофлуоресцентная система с использованием фокусирующей оптики для возбуждения и фокусирующий монохроматор для собирания -  патент 2339974 (27.11.2008)
альфа-спектрометрический способ определения массовой доли 232ub в уране (варианты) -  патент 2301991 (27.06.2007)
система для измерения энергетического распределения атомов, покидающих плазму, в установках токамак -  патент 2297649 (20.04.2007)
Наверх