способ определения степени кристалличности материалов

Классы МПК:G01N33/44 смол; пластиков; резин; кожи 
G01N25/02 исследование фазовых изменений; исследование процесса спекания 
Автор(ы):,
Патентообладатель(и):Специальное конструкторско-технологическое бюро световых и светосигнальных приборов Акционерного общества "Электролуч"
Приоритеты:
подача заявки:
1990-03-30
публикация патента:

Изобретение относится к исследованию физических и структурных свойств композиционных материалов полимеров и сплавов и может быть использовано для определения структуры стеклообразных и композиционных полимерных материалов. Способ включает нагрев образца до образования кристаллической фазы, при этом измеряют скорости теплового расширения образца при максимальном значении температуры и при минимальном ее значении в интервале температур, соответствующих образованию кристаллической фазы, а степень кристалличности определяют из отношения указанных скоростей теплового расширения образца. 2 ил.
Рисунок 1, Рисунок 2

Формула изобретения

Способ определения степени кристалличности материалов, включающий нагрев образца из исследуемого материала и измерение его геометрических размеров с последующим вычислением искомой характеристики, отличающийся тем, что, с целью повышения точности определения степени кристалличности композиционных полимерных материалов, определяют скорость термического расширения образца при двух значениях температур, соответствующих начальной и конечной стадиям образования кристаллической фазы, а искомую характеристику определяют из отношения указанных скоростей термического расширения образца.

Описание изобретения к патенту

Изобретение относится к исследованию физических и структурных свойств композиционных материалов полимеров и сплавов и может быть использовано для определения структуры стеклообразных и композиционных полимерных материалов.

Изобретение предназначено для определения степени кристалличности полимерных материалов неразрушающим методом.

Известен способ определения степени отверждения материалов экстракцией, основанный на определении массы неотвержденной смолы, растворившейся в ацетоне при экстрагировании в приборе Сокслета.

Недостаток известного способа [1] состоит в том, что используется разрушающий метод контроля, продолжительность которого достигает 10 час.

Наиболее близким к предлагаемому техническому решению является cпособ динамической калориметрии [2] состоящий в измерении теплового потока (путем регистрации температурного перепада во многих точках образца) при предположении, что весь испытуемый образец, первоначально незакристаллизованный, принял вид кристаллической структуры по всему объему.

Недостаток известного способа заключается в:

1) длительности измерительного процесса и процесса расшифровки данных;

2) низкой точности способа прототипа, достигающей значения более 10%

3) сложности аппаратурного (калориметрического по природе) оформления.

Цель настоящего изобретения заключается в ускорении процесса определения степени кристаллизации и повышения его точности.

Для достижения поставленной цели, в предложенном способе определения степени кристалличности композиционных полимерных материалов нагрев образца проводят до образования кристаллической фазы, при этом измеряют скорости теплового расширения образца при максимальном значении температуры и при минимальном ее значении в интервале температур, соответствующих образованию кристаллической фазы, а степень кристалличности определяют из отношения указанных скоростей линейного расширения образца

h VTmax/VTmin

где VTmax скорость теплового расширения образца при максимальном значении температуры

VTmin скорость теплового расширения образца при минимальном значении температуры в интервале температур, соответствующих образованию кристаллической фазы.

Предложенный способ поясняется чертежами.

На фиг. 1 схема устройства для определения малых изменений длины образцов.

На фиг. 2 вид дилатограммы, позволяющий получить ход изменения скорости теплового расширения при экстремальных значениях температур и хода изменения температуры образца при постоянной подачи энергии для его нагрева.

Способ реализован с помощью устройства (дилатометра), состоящего из термостата 1, держателей 2, в котором между двумя упорами неподвижным 3 и подвижным 4 помещают испытуемый образец 5. Подвижный упор 4 и держатель 2 образца оснащены рычажно-оптическими датчиками малых перемещений, фиксирующими изменение образца.

Схема не усложнена изображением электронных коммуникаций и элементов подогрева образца, измерения электрических сигналов, преобразования их в движущееся световое пятно и других блоков, имеющих традиционный характер в подобных измерениях.

Определение степени кристалличности полимера производиться следующим образом.

Через образец испытуемого материала, помещаемого в термостат 1 дилатометра, между упорами 3 и 4 пропускают электрический ток. Удерживаемый в упорах образец нагревают, который при этом увеличиваясь в размерах, перемещает подвижный упор 4 дилатометра.

Вначале, с возрастанием температуры, удлинение опытного образца незначительно, в связи с упорядочением его структуры, затем с повышением температуры, пластичность структуры композиционного полимерного образца также повышается и скорость расширения его увеличивается. После наступает резкое временное снижение температуры при протекании тока неизменной величины через образец. Тепловое расширение образца продолжается, но с меньшей скоростью. Падение температуры в образце обусловлено образованием зон кристаллов отдельных компонентов композиционного полимера, что сопровождается поглощением тепловой энергии. Затем температура образца вновь повышается после образования указанных кристаллов, повышается и скорость линейного расширения образца.

Для определения степени кристалличности композиционных полимерных материалов нагрев образца проводят до образования кристаллической фазы, при этом измеряют скорости теплового расширения образца при максимальном значении температуры и при минимальном ее значении в интервале температур, соответствующих образованию кристаллической фазы, а степень кристалличности определяют из отношения указанных скоростей линейного расширения образца

h VTmax/Tmin

где VTmax скорость теплового расширения образца при максимальном значении температуры,

VTmin скорость теплового расширения образца при минимальном значении температуры в интервале температур, соответствующих образованию кристаллической фазы,

Удобство определения степени кристаллизации следует из того обстоятельства, что кинетические характеристики испытуемого образца рассчитываются непосредственно по зачерченным самописцем кривым кристаллизации (фиг.2).

Монохроматический свет подается на зеркальца, далее многошлейфовый осциллограф обеспечивает непрерывную фоторегистрацию сразу нескольких переменных во времени величин.

Зоны перегиба на кривых 1 и 2 являются следствиями процессов кристаллизации и упорядочения структуры в образце, так как температура образца вначале повышается, а затем (при непрекращающемся удлинении) резко падает до некоторого минимума, далее вновь возрастает.

Точность замера всех кинетических характеристик на дилатограмме не ниже 1% 2% а точность величин электрических не ниже 0,1% Относительная погрешность замера перемещений не превышает 0,01% Поэтому общая точность метода определения степени кристалличности составляет 4% 5%

Измеренная степень кристалличности для таких полимеров, как полиэтилентерефталат (ПЭТФ), полигексаметиленадипамид (ПГМАА), полигексаметиленсебацианамид (ПГМСЦА), полиэтиленсебациамат (ПЭСЦ) менялась при подборе для исследования различных образцов в пределах от 0,1 до 0,9.

Использование данного технического решения позволит повысить эффективность процесса определения степени кристалличности; повысить точность измерения, упростить аппаратурное оснащение и сократить расшифровку полученных данных.

Класс G01N33/44 смол; пластиков; резин; кожи 

способ определения марки вулканизированной резины -  патент 2486513 (27.06.2013)
способ оценки концентрации смолоподобных веществ в суспензии -  патент 2472135 (10.01.2013)
устройство для определения физико-механических характеристик кожи и подобных ей мягких композитов -  патент 2460996 (10.09.2012)
способ оценки влияния нанокомпонентов на санитарно-химические свойства полимерных материалов -  патент 2458345 (10.08.2012)
способ распознавания натуральной кожи и кожеподобных материалов -  патент 2454664 (27.06.2012)
способ создания хрупкого покрытия на поверхности изделий из светостабилизированного полиэтилена -  патент 2454663 (27.06.2012)
способ определения характеристического параметра образца пластмассы, армированной углеродным волокном -  патент 2449271 (27.04.2012)
способ определения межструктурных расстояний в коллагене -  патент 2422823 (27.06.2011)
способ и набор для иммуноферментного определения функциональной активности компонента c1q комплемента человека -  патент 2413224 (27.02.2011)
способ оценки усиливающих свойств сажи в резинах -  патент 2409815 (20.01.2011)

Класс G01N25/02 исследование фазовых изменений; исследование процесса спекания 

способ оценки охлаждающей способности жидкостей -  патент 2504758 (20.01.2014)
способ исследования теплофизических свойств жидкостей и устройство для его осуществления -  патент 2504757 (20.01.2014)
устройство для определения фазового состояния газожидкостного потока -  патент 2501001 (10.12.2013)
способ определения температуры полного полиморфного превращения жаропрочных двухфазных титановых сплавов (альфа+бета)-мартенситного класса -  патент 2498280 (10.11.2013)
способ определения температуры кристаллизации парафинов в нефти -  патент 2495408 (10.10.2013)
способ неразрушающего определения температурных характеристик структурных переходов в полимерных материалах -  патент 2493558 (20.09.2013)
способ определения летучести и теплоты испарения смеси жидких веществ -  патент 2488811 (27.07.2013)
способ построения солидуса -  патент 2472140 (10.01.2013)
способ определения термоокислительной стабильности смазочных материалов -  патент 2453832 (20.06.2012)
способ определения температуры начала полиморфного превращения в двухфазных титановых сплавах с использованием метода акустической эмиссии -  патент 2447413 (10.04.2012)
Наверх