пневмомеханическая форсунка

Классы МПК:F23D11/10 с распыливанием с помощью газообразной среды, например водяного пара 
Патентообладатель(и):Абрашкин Александр Михайлович
Приоритеты:
подача заявки:
1994-05-23
публикация патента:

Использование: в устройствах для сжигания жидкого топлива в теплотехнических установках. Сущность изобретения: воздухоподводящий корпус 1 отделен от смесительной камеры 14 с сопловыми отверстиями 15 торцевой стенкой, в отверстиях которой c образованием газовых сопел 2 и 3 размещены сопло 4 для ввода жидкого топлива и сопловой насадок 5, сообщенный с емкостью, заполненной водой, при этом выходные сопловые отверстия 15 выполнены с суммарной площадью проходных сечений, превышающей в 1,2 ... 5 раз суммарную площадь проходных сечений газовых и жидкостных сопел 2,3,4,5 соответственно. 1 ил.
Рисунок 1

Формула изобретения

Форсунка пневмомеханическая, содержащая снабженный соплом для ввода жидкого топлива воздухопроводящий корпус и смесительную камеру, разделенные торцевой стенкой, в отверстии которой с образованием кольцевого воздушного сопла установлено топливное сопло, а также сопловые отверстия для выхода топливной смеси, отличающаяся тем, что она снабжена дополнительным сопловым насадкам, сообщенным с емкостью, заполненной водой, и установленным в воздушном сопле торцевой стенки, а сопловые отверстия для выхода топливной смеси выполнены с суммарной площадью проходных сечений, превышающей в 1,2 5 раз суммарную площадь проходных сечений воздушных и жидкостных сопел.

Описание изобретения к патенту

Изобретение относится к устройствам для распыливания жидкого топлива и может быть использовано при его сжигании в топках теплотехнических установок, а также в химической и пищевой промышленности.

Известна газожидкостная эмульсионная форсунка содержащая корпус, камеру закручивания жидкого топлива и камеру смешения жидкого и газообразного топлива, в которую жидкое топливо подается центральным закрученным потоком, а газообразное через боковые тангенциальные отверстия. Закрученная смесь этих топлив вытекает из сопла камеры смешения имеющего площадь проходного сечения больше суммарной площади проходных тангенциальных отверстий в 1,6-4,3 раза. [1]

Данная форсунка не обеспечивает тонкого распыла жидкого топлива, так как оно центробежными силами отбрасывается к боковым стенкам камеры смещения и вытекает из сопла в виде пленки имеющей форму полого конуса.

Известна также форсунка содержащая корпус, с центральным жидкостным соплом и газовыми расположенными соплами, и смесительную камеру с сопловыми отверстиями. [2]

Недостаток данного технического решения в том, что смесительная камера, по ходу движения топливной смеси выполнена в виде последовательно соединенных; двух коротких резко расширяющихся цилиндров, сужающегося усеченного конуса, цилиндра и конуса в боковой стенке которого размещены сопловые отверстия.

Такая конструкция смесительной камеры на проходных участках с меньшей площадью поперечного сечения; усеченный конус, цилиндр и конус с сопловыми отверстиями, укрупняет топливо, что снижает полноту его сгорания и повышает количество выбросов в атмосферу вредных газов.

Наиболее близкой по технической сущности является пневматическая форсунка камеры сгорания, содержащая корпус с диффузионным соплом, патрубки для подачи топлива и распылителя, выходных насадок с сопловыми отверстиями и размещенным в нем дефлектором, причем суммарная площадь проходных сечений дефлектора установленного перед сопловыми отверстиями превышает в 1,5-2,2 раза суммарную площадь проходных сечений сопловых отверстий. [3]

Недостатком данной форсунки является то, что суммарная площадь проходных отверстий дефлектора больше суммарной площади проходных сечений отверстий сопел, поэтому измельчение топлива за счет расширения газа между дефлектором и сопловыми отверстиями не происходит, что снижает качество распыла и полноту сгорания.

Другой недостаток известных пневматических форсунок в том, что их конструкции не предусматривают возможность минимизации вредных выбросов в атмосферу за счет образования многокомпонентных топливных смесей.

Целью настоящего изобретения является увеличение полноты сгорания топлива за счет повышения качества его расплава и снижение содержания оксидов азота в продуктах сгорания.

Поставленная цель достигается тем, что форсунка пневмо-механическая снабжена дополнительным сопловым насадком, сообщенным с емкостью, заполненной водой, и установленным в воздушном сопле торцевой стенки, а сопловые отверстия для выхода топливной смеси выполнены с суммарной площадью проходных сечений, превышающей в 1,2-5 раз суммарную площадь проходных сечений воздушных и жидкостных сопел.

На чертеже изображен общий вид форсунки пневмо-механической в разрезе.

Форсунка пневмо-механическая содержит полый корпус 1. В торце корпуса выполнены газовые сопла 2 и 3, в которых соосно размещены топливное 4 и водяное 5 сопла, смонтированные во фланце 6 вместе с топливной питательной трубой 7, втулкой 8, винтом 9 и штуцером 10. Со штуцером гайкой 11 скреплен ниппель 12, соединенный с поплавковой камерой (на рисунке не показана). Через отверстие в боковой стенке полость корпуса соединена газовой питательной трубой 13 с источником сжатого воздуха.

Со стороны газовых и жидкостных сопел с корпусом скреплена свинчиванием смесительная камера 14, представляющая собой полый стакан, во вставленном дне которой выполнены выходные сопла 15.

Площадь поперечного сечения выходных сопловых отверстий 15 в 1,2-5 раз больше площади поперечного сечения входных газовых 2 и 3 и жидкостных 4 и 5 сопел.

Места всех соединений выполняются плотными.

Форсунка работает следующим образом.

Вначале в полость корпуса форсунки через питательную трубу 13 подают сжатый воздух, который через сопла 2 и 3 поступает в смесительную камеру 14, из которой через сопла 15 направляется в топочное пространство. Затем в форсунку подают топливо.

Истечение воздуха из газовых сопел создает в жидкостных соплах разрежение, в результате чего вода из поплавковой камеры эжектируется в смесительную камеру.

Вода в смесительную камеру может подаваться и под давлением.

Меньшая площадь поперечного сечения входных в смесительную камеру сопел, по сравнению с выходными, вызывает резкое расширение воздуха в смесительной камере, при этом воздух теряет часть кинетической энергии, которая расходуется на образование водоворотных турбулентных потоков, на соударение частиц жидкости между собой и со стенками смесительной камеры, что ведет к тонкодисперсному измельчению и равномерному распределению топливо-водяной смеси по всему объему смесительной камеры. В результате этого из выходных сопел 15 вытекает мелкодисперсная равномерно распределенная смесь.

При выходе в атмосферу жидкость дополнительно дробится за счет резкого расширения воздуха.

Наличие в воздухотопливной смеси небольшого количества воды снижает температуру и несколько увеличивает время горения в прикорневой зоне факела с образованием компонентов неполного сгорания топлива CO; H2; CHx; NOx.

Вследствие этого в более удаленной от форсунки части факела образуется зона дожигания топлива. При этом реализуется двухстадийное сжигание топлива сопровождающееся снижением температуры факела и восстановлением уже образовавшихся оксидов азота путем взаимодействия их с компонентами неполного сгорания топлива, образовавшимися в прикорневой зоне факела.

Регулируют факел таким образом чтобы обеспечить рациональное значение избытка воздуха и отсутствие продуктов неполного сгорания на выходе из топки.

Управление режимом работы форсунки производят изменением подачи в нее воздуха и топлива, при этом автоматически изменяется величина разряжения в водяном сопле 5 и количество эжектируемой в смесительную камеру воды.

Такая конструкция форсунки обеспечивает более полное сгорание топлива за счет повышения качества его распыла и минимальное содержание оксидов азота в отходящих в атмосферу продуктах сгорания.

Класс F23D11/10 с распыливанием с помощью газообразной среды, например водяного пара 

способ и устройство для сжигания жидкого топлива -  патент 2518710 (10.06.2014)
двухкомпонентная форсунка и способ распыления текучих сред посредством такой форсунки -  патент 2511808 (10.04.2014)
пневматическая вихревая форсунка -  патент 2509261 (10.03.2014)
способ изготовления вихревой распылительной форсунки для распыления жидкого топлива -  патент 2492959 (20.09.2013)
форсунка -  патент 2472067 (10.01.2013)
форсунка -  патент 2468293 (27.11.2012)
форсунка -  патент 2449216 (27.04.2012)
форсуночный модуль камеры сгорания гтд -  патент 2439430 (10.01.2012)
форсунка -  патент 2396487 (10.08.2010)
низконапорная форсунка и способ распыла топлива -  патент 2372557 (10.11.2009)
Наверх