способ получения катализатора окисления оксида углерода

Классы МПК:B01J37/04 смешивание
B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением
Автор(ы):, , , ,
Патентообладатель(и):Электростальский химико-механический завод
Приоритеты:
подача заявки:
1993-03-01
публикация патента:

Сущность изобретения: способ получения катализатора окисления оксида углерода включает смешение диоксида марганца и оксида меди с бентонитовой глиной в количестве 5 - 20 мас.% в виде водной суспензии, формование гранул, сушку, дробление и термообработку в кипящем слое при соотношении объема гранул катализатора и объема подаваемого газа 1: (3000 - 15000). 1 табл.
Рисунок 1

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ОКИСЛЕНИЯ ОКСИДА УГЛЕРОДА, включающий смешение диоксида марганца и оксида меди со связующим - бентонитовой глиной, формование гранул, сушку, дробление и термообработку, отличающийся тем, что диоксид марганца и оксид меди смешивают со связующим в количестве 5 - 20 мас. % в виде водной суспензии и термообработку ведут в кипящем слое при отношении объема гранул катализатора к объему подаваемого воздуха 1 : (3000 - 15000).

Описание изобретения к патенту

Изобретение относится к области очистки газов от вредных примесей и может быть использовано для очистки газовых смесей от оксида углерода в системах коллективной и индивидуальной защиты органов дыхания.

Известен способ получения катализатора для очистки газовых смесей от токсичных примесей, в частности от оксида углерода, включающий добавление к виброизмельченному порошку активной окиси алюминия марки А-1 раствора нитрата меди, небольшого количества воды для придания массе пластичности, формование в шнеке-грануляторе с диаметром фильеры 2,0-2,5 мм, термообработку полученных гранул при 280-300оС в течение 3-4 ч с последующей пропиткой раствором нитрата марганца и повторную термообработку [1]

Недостатком известного способа является сложность проведения технологического процесса приготовления катализатора, обусловленная необходимостью пропитки термообработанных гранул катализатора раствором нитрата марганца и последующей термообработкой.

Известен также способ получения катализатора окисления оксида углерода из выхлопных или дымовых газов, включающий смешивание окислов марганца, меди и алюминия при соотношении 7:3:10 в сухом виде, затем добавление воды для образования пастообразной массы и ее проминание длительное время с образованием равномерной массы, проминание последней досуха, формование, сушку полученных гранул и пиролиз при температуре 500-600оС в течение 1-2 ч с полным удалением воды [2]

Недостатками данного способа являются длительность процесса получения равномерной массы смеси оксидов марганца, меди и алюминия и недостаточно высокая каталитическая активность полученного катализатора в окислении оксида углерода.

Наиболее близким к предложенному по технической сущности и количеству совпадающих признаков является катализатор для окисления оксида углерода, который получают путем смешивания диоксида марганца и оксида меди со связующим, в качестве которого используют бентонитовую глину, формование, сушку, дробление и термообработку полученных гранул [3]

Недостатком данного катализатора является низкая каталитическая активность в окислении оксида углерода.

Целью изобретения является повышение каталитической активности катализатора в окислении оксида углерода.

Поставленная цель достигается предложенным способом, включающим смешение водной суспензии диоксида марганца и оксида меди со связующим, формование гранул, сушку, дробление и термообработку.

Отличие предложенного способа от известного заключается в том, что связующее бентонитовая глина в количестве 5-20 мас. смешивается с диоксидом марганца и оксидом меди в виде водной суспензии, а термообработку проводят в кипящем слое при отношении объема гранул катализатора к объему подаваемого воздуха 1:(3000-15000).

Способ осуществляется следующим образом. Смешивают диоксид марганца и оксид меди в виде водной суспензии со связующим бентонитовой глиной. Количество связующего (5-20 мас.) является оптимальным с точки зрения получения механически прочных гранул катализатора с высокой каталитической активностью. Полученную пасту формуют на шнек-грануляторе при давлении 35-45 атм и температуре 100-120оС. Сформованные гранулы сушат при температуре 60-90оС в течение 10-15 ч, дробят, отсеивают фракцию 1-3 мм и проводят термообработку при 250-370оС при отношении объема гранул катализатора к объему подаваемого воздуха 1:(3000-15000). Состав катализатора: диоксид марганца 50-70 мас. оксид меди 12-28 мас. бентонитовая глина 5-20 мас. примеси 5-10 мас.

П р и м е р 1. Берут 150 кг пасты диоксида марганца с влажностью 50% и 40 кг пасты оксида меди с влажностью 60% загружают в смеситель, добавляют 150 л воды, перемешивают в течение 1,5 ч. С началом перемешивания добавляют 4,8 кг связующего (бентонитовая глина), при этом содержание связующего составляет 5 мас. Полученную суспензию фильтруют, выгружают в лопастной смеситель с паровой рубашкой и ведут процесс пластификации в течение 1 ч до влажности 30% На шнек-грануляторе формуют гранулы, сушат их при температуре 85оС в течение 12 ч. Высушенные гранулы дробят, отсеивают фракцию 1-3 мм и проводят термообработку в кипящем слое воздухом при температуре 330оС и соотношении объема гранул катализатора и объема воздуха 1:10000. Полученный катализатор имеет следующий состав: диоксид марганца 59 мас. оксид меди 15 мас. связующее (бентонитовая глина) 5 мас. примеси остальное. Каталитическая активность в окислении оксида углерода составила 1,36способ получения катализатора окисления оксида углерода, патент № 205432210-3 моль/г.

П р и м е р 2. Ведение процесса по примеру 1, за исключением содержания связующего, равного 20 мас. Полученный катализатор имеет следующий состав: диоксид марганца 50 мас. оксид меди 13 мас. связующее (бентонитовая глина) 20 мас. примеси остальное. Каталитическая активность в окислении оксида углерода составила 1,28способ получения катализатора окисления оксида углерода, патент № 205432210-3 моль/г.

П р и м е р 3. Ведение процесса по примеру 1, за исключением содержания связующего, равного 10 мас. и соотношения объема гранул катализатора и объема подаваемого воздуха, равного 1:3000. По- лученный катализатор имеет следующий состав: диоксид марганца 55 мас. оксид меди 14 мас. связующее (бентонитовая глина) 10 мас. примеси остальное. Каталитическая активность в окислении оксида углерода составила 1,35способ получения катализатора окисления оксида углерода, патент № 205432210-3 моль/г.

П р и м е р 4. Ведение процесса по примеру 1, за исключением содержания связующего, равного 10 мас. Полученный катализатор имеет состав, как в примере 3. Каталитическая активность в окислении оксида углерода составила 1,42способ получения катализатора окисления оксида углерода, патент № 205432210-3 моль/г.

Результаты исследования влияния содержания связующего и соотношения объема гранул катализатора и объема подаваемого воздуха на каталитическую активность приведены в таблице.

Как следует из данных, приведенных в таблице, наибольшая каталитическая активность наблюдается при содержании связующего 10 мас. и соотношении объема гранул катализатора к объему подаваемого воздуха 1:10000. При содержании связующего менее 5 мас. гранулы катализатора не имеют достаточной механической прочности, при содержании связующего выше 20 мас. происходит снижение каталитической активности. С другой стороны, каталитическая активность снижается при соотношении объема гранул катализатора и объема подаваемого воздуха ниже 1:3000 и выше 1:15000.

Сущность предложенного способа заключается в следующем. Повышение каталитической активности в окислении оксида углерода при проведении процесса смешения диоксида марганца и оксида меди со связующим (бентонитовой глиной) в виде водной суспензии и проведении термообработки в кипящем слое, очевидно, происходит вследствие того, что, во-первых, смешение диоксида марганца и оксида меди со связующим (бентонитовой глиной) в виде водной суспензии в количестве 5-20 мас. позволяет получить механически прочные гранулы катализатора при меньшем относительном содержании в композиции связующего, которое не является носителем каталитических свойств. То есть уменьшение содержания связующего в составе катализатора, обусловленное лучшими вяжущими свойствами связующего вследствие проведения процесса смешения в виде водной суспензии, дает возможность приготовить катализатор, содержащий в своем составе большую долю каталитически активных компонентов, которыми являются диоксид марганца и оксид меди. Во-вторых, в процессе проведения термообработки в кипящем слое имеют место столкновения гранул катализатора друг с другом и, вследствие этого, образование на их поверхности характерного микрорельефа и развитие внешней поверхности гранул, которая в значительной степени определяет активность катализатора. При малом соотношении объема гранул катализатора и объема подаваемого воздуха столкновения гранул происходят достаточно редко. С увеличением соотношения объема гранул и объема подаваемого воздуха увеличивается и частота взаимных столкновений, что приводит к развитию внешней поверхности гранул и, вследствие этого, к росту каталитической активности. Однако при дальнейшем увеличении соотношения объема гранул катализатора и объема подаваемого воздуха количество и кинетическая энергия взаимных столкновений уменьшается, это ведет к снижению внешней поверхности гранул и к уменьшению каталитической активности. В свою очередь, смешение диоксида марганца и оксида меди со связующим в виде водной суспензии позволяет достичь наилучшего распределения компонентов и способствует образованию максимального количества каталитически активных центров. Совокупность указанных признаков позволяет достичь высокой активности катализатора в окислении оксида углерода.

Таким образом, предложенный способ позволяет получить катализатор, значительно превышающий известные в окислении оксида углерода.

Класс B01J37/04 смешивание

способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2517188 (27.05.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)

Класс B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением

способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
катализатор для получения метилмеркаптана -  патент 2497588 (10.11.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола -  патент 2493910 (27.09.2013)
катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора -  патент 2472584 (20.01.2013)
шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления -  патент 2472583 (20.01.2013)
способ аммоксимирования -  патент 2453535 (20.06.2012)
способ изготовления пористого гранулированного катализатора -  патент 2453367 (20.06.2012)
катализатор парового риформинга углеводородов и способ его получения -  патент 2446879 (10.04.2012)
катализатор и процесс гидродеоксигенации кислородорганических продуктов переработки растительной биомассы -  патент 2440847 (27.01.2012)
Наверх