сплав на основе никеля для коррозионной защиты

Классы МПК:C22C1/05 смеси металлического порошка с неметаллическим
C22C19/03 никеля
Автор(ы):
Патентообладатель(и):Научно-исследовательский институт материалов электронной техники
Приоритеты:
подача заявки:
1993-07-09
публикация патента:

Сущность: сплав на основе никеля содержит, мас.%: медь 0,2 - 0,4; бор 0,4 - 0,6; тетраборнокислый натрий 0,1 - 0,3; карбонат бария 0,1 - 0,3. 1 табл.
Рисунок 1

Формула изобретения

СПЛАВ НА ОСНОВЕ НИКЕЛЯ ДЛЯ КОРРОЗИОННОЙ ЗАЩИТЫ, содержащий бор, отличающийся тем, что он дополнительно содержит медь, тетраборнокислый натрий, карбонат бария при следующем соотношении компонентов, мас.%:

Медь - 0,2 - 0,4

Бор - 0,4 - 0,6

Тетраборнокислый натрий - 0,1 - 0,3

Карбонат бария - 0,1 - 0,3

Никель - Остальное

Описание изобретения к патенту

Изобретение относится к металлургии, а именно к сплавам системы никель-медь, используемым для защиты металлов от коррозии.

Широко известны в металлургии сплавы никеля с медью, используемые в качестве покрытия для защиты от коррозии, например, медных сплавов, применяемых в электросоединителях (ГОСТ 492-73. Никель, сплавы никелевые, медно-никелевые, обрабатываемые давлением).

Наиболее близким к заявляемому является сплав на основе никеля, содержащий ингредиенты в следующих количествах, мас. Медь 4-6 Бор 0,3-0,6

Тетраборнокислый натрий 0,3-0,6 Карбонат лития 0,1-0,3 Никель Остальное (а.с. СССР N 1782056, кл. С 22 С 19/03, 1990).

Этот сплав имеет приращение веса при нагреве на воздухе при 400оС в течение 30 мин, равное 1,3-1,7 г/см2.10-6.

Однако при использовании этого сплава в качестве покрытия в ленточных материалах, из которых вырубают выводные рамки для интегральных схем, при разварке микропроволоки на вывода рамки (температура разварки около 400оС) происходит окисление выводов и, как следствие, 15-20% приборов бракуют из-за низкого качества сварного соединения.

Цель изобретения повышение коррозионной стойкости сплава.

Для достижения указанной цели в состав на основе никеля содержащий медь, бор и тетраборнокислый натрий, вводят карбонат бария при следующем соотношении компонентов, мас. Медь 0,2-0,4 Бор 0,4-0,6

Тетраборнокислый натрий 0,1-0,3 Карбонат бария 0,1-0,3 Никель Остальное.

Введение карбоната бария вместо карбоната лития позволяет получать в никелевой матрице после спекания и термообработки устойчивые окислы бария, которые располагаются по границам зерен и способствуют диффузии бора в поверхностные слои, создавая тем самым защитные свойства против окисления. Введение бора совместно с тетрабоpнокислым натрием и карбонатом бария способствует восстановлению окислов на поверхности изделия из сплава при пайке.

Уменьшение содержание бора менее 0,4, тетраборнокислого натрия менее 0,1 и карбоната бария менее 0,1 мас. приводит к снижению интенсивности восстановления окислов никеля и, как следствие, снижению коррозионной стойкости при повышенных температурах. Увеличение содержания бора более 0,6, тетраборнокислого натрия более 0,3 и карбоната бария более 0,3 мас. приводит к снижению пластических свойств сплава за счет выделения на границах зерен никелевого сплава боридов и интерметаллидных соединений бария.

Для получения предлагаемого никелевого сплава было подготовлено пять смесей порошков с содержанием в, мас. медь 0,1; 0,2; 0,3; 0,4; 0,5; бор 0,3; 0,4; 0,5; 0,6; 0,7; тетраборнокислый натрий 0,05; 0,1; 0,2; 0,3; 0,4; карбонат бария 0,05; 0,1; 0,2; 0,3; 0,4; никель до 100, а также готовили смесь сплава прототипа с содержанием, мас. медь 5; бор 0,4; тетраборнокислый натрий 0,4; карбонат лития 0,2; остальное никель.

Смеси порошков прокатывали в полосы сечением 1,2х60 мм на двухвалковом прокатном стане с диаметром валков 170 мм. Прокатанные полосы спекали в среде водорода в печи типа ЦЭП-272 по режиму: температура 1150оС, время выдержки 30 мин. Спеченные полосы прокатывали на толщину 0,5 мм с двумя промежуточными отжигами в толщине 0,9 и 0,7 мм по режиму: температура 800оС, время выдержки 30 мин, среда водород. Коррозионную стойкость определяли путем фиксирования приращения веса на образцах размером 0,5х50х50 мм. Образцы нагревали на воздухе до 400оС и выдерживали при этой температуре в течение 30 мин. Взвешивание проводили на весах ВЛР-200 г с точностью до 5-го знака. Результаты замеров представлены в таблице.

Из таблицы видно, что предложенный состав сплава является оптимальным и имеет коррозионную стойкость по сравнению со сплавом прототипом в (1,8-2,6) раза лучшую.

Повышение коррозионной стойкости позволяет проводить разварку кристаллов на воздухе и исключить образование брака на этой операции.

Класс C22C1/05 смеси металлического порошка с неметаллическим

спеченная твердосплавная деталь и способ -  патент 2526627 (27.08.2014)
композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
способ получения поликристаллического композиционного материала -  патент 2525005 (10.08.2014)
шихта для изготовления материала для сильноточных электрических контактов и способ изготовления материала -  патент 2523156 (20.07.2014)
твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
способ получения композиционного материала -  патент 2509818 (20.03.2014)
порошковый композиционный материал -  патент 2509817 (20.03.2014)
спеченный материал для сильноточного скользящего электроконтакта -  патент 2506334 (10.02.2014)
наноструктурный композиционный материал на основе чистого титана и способ его получения -  патент 2492256 (10.09.2013)

Класс C22C19/03 никеля

дентальный внутрикостно-поднадкостничный имплантат и способ его установки -  патент 2529472 (27.09.2014)
листовая сталь для горячего штампования и способ изготовления горячештампованной детали с использованием листовой стали для горячего штампования -  патент 2520847 (27.06.2014)
сплав на основе никеля -  патент 2518814 (10.06.2014)
электротехническая листовая сталь с неориентированным зерном и способ ее изготовления -  патент 2471013 (27.12.2012)
способ изготовления композитного материала из сплавов на основе никелида титана -  патент 2465016 (27.10.2012)
способ изготовления биаксиально текстурированной подложки из бинарного сплава на основе никеля для эпитаксиального нанесения на нее буферного и высокотемпературного сверхпроводящего слоев для ленточных сверхпроводников -  патент 2451766 (27.05.2012)
модификатор для никелевых сплавов -  патент 2447175 (10.04.2012)
способ получения ультрадисперсного порошка сплава никеля и рения -  патент 2445384 (20.03.2012)
способ производства безуглеродистых литейных жаропрочных сплавов на никелевой основе -  патент 2426810 (20.08.2011)
сплав -  патент 2426809 (20.08.2011)
Наверх