способ обработки зернистых материалов

Классы МПК:F26B17/10 с перемещением высушиваемого материала, осуществляемым потоком газообразной среды, например истекающей из сопел
Автор(ы):,
Патентообладатель(и):Омское научно-производственное предприятие "Прогресс"
Приоритеты:
подача заявки:
1992-07-29
публикация патента:

Использование: в технологических процессах тепломассообмена между влажным или горячим зернистым материалом и может найти применение в химической, металлургической, строительной и др. отраслях промышленности, в частности при очистке газа от пыли. Сущность изобретения: в начале процесса частицы зернистого материала переводят во взвешенное состояние. Увеличивают скорость их движения до создания предельной концентрации. Затем скорость снижают до образования псевдоочищенного тонкого слоя. После этого сквозь слой частиц пропускают теплоноситель противотоком их движению до полной коагуляции последних. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

СПОСОБ ОБРАБОТКИ ЗЕРНИСТЫХ МАТЕРИАЛОВ путем перевода частиц зернистого материала во взвешенное состояние, отличающийся тем, что после перевода частиц во взвешенное состояние скорость их движения увеличивают до создания предельной концентрации частиц, затем скорость снижают до образования псевдоожиженного тонкого слоя, после чего сквозь слой частиц пропускают теплоноситель противотоком их движению до полной коагуляции последних.

Описание изобретения к патенту

Изобретение относится к технологическим процессам тепломассообмена между влажным или горячим зернистым материалом, может найти применение в химической, металлургической, строительной и др. отраслях промышленности, в частности, при очистке газа от пыли.

Известны способы обработки зернистых материалов [1] заключающийся в придании материалу взвешенного состояния, в результате чего выпадают крупные коагулированные частицы.

Недостатком этих способов является то, что не происходит очистки газа от мелких частиц.

Известен способ обработки зернистых материалов [2] заключающийся в том, что сушку материала осуществляют во взвешенном состоянии.

Недостатком этого способа является также слабая очистка газа от мелких частиц и слабая интенсивность тепломассообмена.

Задачей изобретения является предложение способа обработки зернистых материалов, который был бы свободен от указанных недостатков, т.е. обладал бы повышенной интенсивностью тепломассообмена за счет увеличения времени пребывания частиц материала во взвешенном состоянии.

Задача решается тем, что в способе обработки зернистых материалов путем перевода частиц зернистого материала во взвешенное состояние после перевода частиц во взвешенное состояние скорость их движения увеличивают до создания предельной концентрации частиц, затем скорость снижают до образования псевдоожиженного тонкого слоя, после чего сквозь слой частиц пропускают теплоноситель противотоком их движению до полной коагуляции последних.

На фиг. 1 изображен общий вид установки; на фиг. 2 то же, вид сверху; на фиг. 3 разрез А-А на фиг. 1.

Предлагаемый способ осуществляется следующим образом.

Сначала технологического процесса частицы зернистого материала переводят во взвешенное состояние, скорость их движения увеличивают до создания предельной концентрации частиц, затем скорость снижают до образования псевдоожиженного тонкого слоя, после чего сквозь слой частиц пропускают теплоноситель противотоком их движению до полной коагуляции последних.

Исходный материал вводится питателем 1 в вертикальную трубу 2, где подхватывается потоком воздуха и переводится во взвешенное состояние. В корпусе 3 скорость потока устанавливается до такой величины, при которой достигается предельная концентрация частиц. Крупные частицы в этом участке начинают двигаться по инерции быстрее потока, передавая ему часть своей энергии. В отводе 4 и переходе 5 происходит понижение скорости потока до величины, которая меньше предельной концентрации частиц в горизонтальном потоке в пылеосадочной камере 6. Из-за высокой концентрации близко расположенных и медленно двигающихся частиц, большая их доля начинает выпадать из потока вниз в виде отдельных частиц или их агрегатов, образовавшихся в результате коагуляции. Часть материала сразу опускается на полку 8, другая часть сначала скользит по пластинам, составляющих полки 7, проваливаясь вниз через зазоры между пластинами, образующими эти полки.

Вторая стадия обработки материала на полках 8 в отличие от первой стадии отличается большой производительностью, которая образуется свойствами материала, числом и общей длиной полок 8 и 11, а также их углом наклона к горизонту.

Если при первой стадии обработки из-за краткого времени пребывания материала в вертикальной трубе (1-5 с) от него отнимается только часть тепла при тепловом процессе или удаляется только в основном поверхностная влага при сушке, то на второй стадии обеспечивается полное протекание указанных процессов. В начале технологического процесса при придании частицами скорости движения материал обрабатывают газами, температура которого превышает термическую стойкость материала.

Из-за краткого времени пребывания в потоке частиц температура последних не превышает температуры мокрого термометра, так как из материала удалится только часть влаги. Далее, при получении тонкого псевдоожиженного слоя частиц зернистого материала по штуцеру 10 противотоком вводится теплоноситель. Высушенный материал перед поступлением в бункер 12 обеспыливается продувным атмосферным воздухом на системе пересыпных полок 11.

В результате краткотечной обработки материл помимо частичной подсушки приобретает сыпучесть в результате выдувания из него мелких пылевидных частиц. Газ, поступивший в пылеосадочную камеру 6 из трубы 2 вместе с газом и воздухом, введенным по патрубкам 10 и 13, огибает вертикальную перегородку 14, где дополнительно очищается от пыли и поступает в циклон 16, а затем в рукавный фильтр.

Способ обработки зернистых материалов и основные размеры устройства для его реализации иллюстрируются примером.

Пример реализации предлагаемого способа получен расчетом по данным эксплуатации сушилки для сушки холостого калия производительностью М 30 т/ч 8,33 кг/с.

Фракционный состав хлористого калия, скорость витания частиц и другие параметры приведены в таблице.

Секундный массовый расход газа на выходе сушилки

Gчк= vчкспособ обработки зернистых материалов, патент № 2051322способ обработки зернистых материалов, патент № 2051322t способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 2,78 кг/с, откуда объемный расход vчк= способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 3,12 м3/с. Здесь способ обработки зернистых материалов, патент № 2051322t= способ обработки зернистых материалов, патент № 2051322o способ обработки зернистых материалов, патент № 2051322 1,32 способ обработки зернистых материалов, патент № 2051322 0,89 кг/м3 плотность газа на выходе сушилки при tк 130оС, способ обработки зернистых материалов, патент № 2051322т 3 массовая концентрация частиц в потоке (коэффициент смеси).

Скорость потока устанавливаем по скорости витания наиболее крупной фракции по эмпирической формуле W Kспособ обработки зернистых материалов, патент № 2051322Wв 1,5способ обработки зернистых материалов, патент № 20513229,18 13,77 13,8 м/с, в которой k 1,5. Тогда диаметр трубы 2 равен D способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 0,537 способ обработки зернистых материалов, патент № 2051322 0,6 м.

Увеличиваем сечение трубы на выходе до D 0,8 м, тогда скорость во входном сечении конуса на выходе трубы составит

W способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 6,2 м/с.

Величина предельной концентрации частиц фракции 0,40 + 0,20 мм (Wв= 1,1 м/с) на выходе трубы составит

lgYпред= A- способ обработки зернистых материалов, патент № 2051322 3,74 способ обработки зернистых материалов, патент № 2051322 3,74-2,18 1,56;

Y пред.=36,3 г/см3. Здесь а 5,8способ обработки зернистых материалов, патент № 205132210-0,21 (Wв) 5,8способ обработки зернистых материалов, патент № 205132210-9,21/1,1 3,74; b 12 (Wв)1,2 12способ обработки зернистых материалов, патент № 20513221,11,26 13,56. Действительная концентрация частиц этой фракции в потоке

Y способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 0,614 кг/м3= 614 г/м3 значительно превышает предельную.

Таким образом в потоке достигается предельная концентрация данной и всех более крупных фракций, которые, однако из потока не выпадают, а, двигаясь по инерции, выносятся в пылеосадительную камеру. Принимаем ширину пылеосадительной камеры равной b 1,0 м, а высоту h 1,5 м. Тогда скорость потока газа составит в ней

W способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 2,08 м/с. Величину предельной концентрации фракции 0,10 + 0,05 мм (Wв 0,3 м/с) рассчитываем по формулам для горизонтального потока. Она равна

lgспособ обработки зернистых материалов, патент № 2051322 1,84способ обработки зернистых материалов, патент № 205132210 способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 1,84способ обработки зернистых материалов, патент № 205132210 способ обработки зернистых материалов, патент № 2051322

способ обработки зернистых материалов, патент № 2051322 1,46-(-0,18) 1,64; способ обработки зернистых материалов, патент № 2051322= 43,7 г/кг, у способ обработки зернистых материалов, патент № 2051322оt 43,7 способ обработки зернистых материалов, патент № 20513220,89 38,9 г/м3. Эта же величина для фракции 0,20 + 0,10 мм (Wb 0,87 м/с) равна

lgспособ обработки зернистых материалов, патент № 2051322 1,84способ обработки зернистых материалов, патент № 205132210способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 0,222 способ обработки зернистых материалов, патент № 2051322 0,062

1,15 1,0 г/м3 В поток, поступающим в камеру, концентрация фракций 0,10 + 0,05 мм составляет

Y способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 0,427 кг/м3 427 г/м3, а фракции 0,20 + 0,10 мм

Y способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 0,534 кг/м3= 534 г/м3 Эти данные показывают, что практически вся фракция 0,29 + 0,10 мм, а также все более крупные, а также 90% фракции 0,10 + +0,05 мм могут осесть на перфорированных полках внизу пылеосадительной камеры. Ее длина необходима для осаждения частиц фракции 0,20 + 0,10 мм. Составит l Wч способ обработки зернистых материалов, патент № 2051322 2,08 способ обработки зернистых материалов, патент № 2051322 3,58способ обработки зернистых материалов, патент № 20513224 м. В камере осядут фракция 0,20 + 0,10 мм и более крупная, т.е. способ обработки зернистых материалов, патент № 2051322 0,75 всего материала, а также некоторая часть более мелких фракций. Основная масса последних выносится в циклон. Более крупные частицы, осевшие вниз камеры, перемещаются и досушиваются на полках внизу камеры. Время их пребывания на одной полке длиной l 3,8 м составит способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 12,7 с. Здесь Wс 0,3 м/с скорость движения слоя материала на наклонной полке. Этого времени вполне достаточно для удаления остатков влаги или для охлаждения материала до конечной температуры в условиях, где эти процессы при малом значении движущей силы протекают медленно. Установка дополнительно еще хотя бы одной полочки или подача теплоносителя в рубашку или непосредственно в слой материала позволит сократить время пребывания материала на первой стадии сушки путем уменьшения высоты сушки или понизить начальную температуру сушильного агента, что важно при сушке термически нестойких материалов. Наиболее целесообразен предлагаемый способ при сушке материалов с большим содержанием влаги.

Расчеты, выполненные с меньшей концентрацией материала в потоке, показали, что размеры сушилки в доступных пределах. Так при способ обработки зернистых материалов, патент № 2051322= 1 кг/кг ее диаметр равен

D способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 1,0 м где vчк= способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 10,6 м3/с Высота пылеосадительной камеры составит при ее ширине b 2,0 м

h способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 2,54 м, а длина l Wч способ обработки зернистых материалов, патент № 2051322 2,08 способ обработки зернистых материалов, патент № 2051322 способ обработки зернистых материалов, патент № 2051322 6,0 м

Предлагаемый способ обработки зернистых материалов позволяет повысить эффективность взаимодействия фаз в пневмотранспортных сушилках путем двухстадийного воздействия потока газа на материал при различных скоростях и температурах потока газа, при этом первая стадия, обеспечивая интенсивную сушку, является подготовительным этапом, обеспечивающим интенсивное протекание второй стадии.

Класс F26B17/10 с перемещением высушиваемого материала, осуществляемым потоком газообразной среды, например истекающей из сопел

способ сушки дисперсного материала во взвешенно-транспортируемом слое и установка для его осуществления -  патент 2529763 (27.09.2014)
многоступенчатая система и способ предварительной сушки бурого угля с использованием перегретого пара -  патент 2527904 (10.09.2014)
струйный нагреватель -  патент 2525562 (20.08.2014)
сушилка виброкипящего слоя для дисперсных материалов -  патент 2525046 (10.08.2014)
камера для проведения тепломассообмена между диспергированными частицами и газообразной средой -  патент 2523486 (20.07.2014)
вихревая распылительная сушилка для дисперсных материалов -  патент 2513077 (20.04.2014)
сушилка для сыпучих материалов -  патент 2511807 (10.04.2014)
установка для сушки дисперсных материалов -  патент 2509273 (10.03.2014)
установка для сушки растворов, суспензий и пастообразных материалов -  патент 2490575 (20.08.2013)
аппарат для безуносной сушки -  патент 2490574 (20.08.2013)
Наверх