фазово-контрастный визуализатор плотностных неоднородностей морской воды
Классы МПК: | G01N21/85 исследование потоков текучих сред или гранулированных твердых материалов |
Автор(ы): | Грудин Б.Н., Фищенко В.К., Кулешов Е.Л., Плотников В.С. |
Патентообладатель(и): | Научно-исследовательский физико-технический институт при Дальневосточном государственном университете |
Приоритеты: |
подача заявки:
1992-10-01 публикация патента:
20.10.1995 |
Использование: в рефрактометрии, при изучении плотностных оптических неоднородностей, в частности плотностных неоднородностей морской воды. Сущность изобретения: устройство содержит лазер, конденстор, световую диафрагму, полупрозрачное зеркало, коллиматорный объектив иллюминатор, автоколлимационное зеркало, зеркало объектив приемной части, матовый экран, фоторегистратор, объектив, уменьшающий максимальный период исследуемых неоднородностей до 1 мм, задняя фокальная плоскость которого совпадает с передней фокальной плоскостью объектива приемной части с фокусным расстоянием f-489,2 мм, и корректирующую фазовую пластинку Шмидта, расположенную перед объективом приемной части, профиль которой
(x) удовлетворяет уравнению
(x)=do+7,5
10-5x4-6,5
10-6x6, где do толщина корректирующей фазовой пластинки Шмидта, при этом матовый экран размещен на расстоянии 1000 мм от объектива приемной части. Изобретение позволяет уменьшить искажение в визуализированном изображении за счет расширения области частотно-контрастной характеристики визуализатора при сохранении его параметров: виброустойчивости и контраста. 6 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6




Формула изобретения
ФАЗОВО-КОНТРАСТНЫЙ ВИЗУАЛИЗАТОР ПЛОТНОСТНЫХ НЕОДНОРОДНОСТЕЙ МОРСКОЙ ВОДЫ, содержащий лазер, установленные последовательно по ходу излучения конденсор, световую диафрагму, полупрозрачное зеркало, коллиматорный объектив, иллюминатор, автоколлимационное зеркало, зеркало, объектив приемной части, матовый экран, фоторегистратор, отличающийся тем, что в него дополнительно введены последовательно расположенные по ходу излучения объектив и корректирующая фазовая пластинка Шмидта, установленные перед объективом приемной части, при этом передняя фокальная плоскость коллиматорного объектива совпадает с плоскостью расположения автоколлимационного зеркала, его задняя фокальная плоскость совпадает с передней фокальной плоскостью дополнительного объектива, задняя фокальная плоскость которого совпадает с передней фокальной плоскостью объектива приемной части, фокусное расстояние которого равно 489,2 мм, профиль d X корректирующей фазовой пластинки Шмидта удовлетворяет уравнениюd X d0 + 7,5


где d0 толщина корректирующей фазовой пластинки Шмидта,
а матовый экран установлен от объектива приемной части на расстоянии 1000 мм.
Описание изобретения к патенту
Изобретение относится к рефрактометрии и может быть использовано при изучении плотностных оптических неоднород- ностей, в частности для исследования плотностных неоднородностей морской воды. Известны приборы на основе метода визуализации прозрачных неоднородностей путем зондирования анализируемого объема среды лазерным световым пучком, на пути которого после его выхода их анализируемого объема установлена оптическая расфокусированная изображающая система (метод визуализации при дефокусировке) [1]Наиболее близким техническим решением к предлагаемому является устройство для исследования оптических неоднородностей морской воды, содержащее гелий-неоновый лазер, конденсатор, световую диафрагму, коллиматорный объектив, систему из зеркала и полупрозрачного зеркала, иллюминатор, телескопическую систему Кассагрена, автоколлимационное зеркало, объектив приемной части, сопрягающий объектив, матовый экран, фоторегистратор [2]
Недостатком известного устройства является синусоидальный вид частотно-контрастной характеристики, что практически не позволяет проводить количественные оценки визуализируемых микроструктур. Для устранения указанного недостатка предложен фазово-контрастный визуализатор плотностных неоднородностей морской воды, технический результат которого выражен в уменьшении искажений в визуализированном изобретении за счет расширения области прямоугольности частотно-контрастной характеристики визуализатора при сохранении его параметров виброустойчивости и контраста. Указанный технический результат достигается тем, что в фазово-контрастный визуализатор плотности неоднородностей морской воды, содержащий лазер, конденсор, световую диафрагму, полупрозрачное зеркало, коллиматорный объектив, иллюминатор, автоколлимационное зеркало, зеркало, объектив приемной части, матовый экран, фоторегистратор, введены объектив, уменьшающий максимальный период исследуемых неоднородностей до 1 мм, задняя фокальная плоскость которого совпадает с передней фокальной плоскостью объектива приемной части с фокусным расстоянием f=489,2 мм, и корректирующая фазовая пластина Шмидта, расположенная перед объективом приемной части, при этом профиль корректирующей фазовой пластинки Шмидта d(x) удовлетворяет уравнению
d(x)= do+7,5


















































Поскольку после уменьшения диаметр светового пучка равен 10 мм, то xmax= 5 мм. Исходя из возможностей практической реализации корректирующей фазовой пластинки 10 Шмидта выбирают b=1000 мм. Так как уменьшенное изображение автоколлимационного зеркала 7 сфокусировано в передней фокальной плоскости объектива 11 приемной части, то есть фокусное расстояние можно найти из условия f=f2/(f-b), поскольку


d(x) do+








do толщина пластинки (порядка 1 мм). На фиг. 3 показан профиль корректирующей фазовой пластинки 10 Шмидта. С помощью ЭВМ осуществлено моделирование метода дефокусировки. На фиг. 4, 5 и 6 показаны исходный фазовый объект, его изображение, полученное методом дефокусировки, и изображение, полученное методом дефокусировки с коррекцией частотной характеристики за счет введения в оптическую систему дополнительных сферических абеpраций третьего и пятого порядков. Полученное изображение проектируется на матовый экран 12, считывается фоторегистратором 13. Техническая эффективность данного визуализатора состоит в том, что он практически сохраняет в плане виброустойчивости и контраста изображения характеристики известных визуализаторов на основе метода дефокусировки, но искажения наблюдаемых неоднородностей в нем значительно меньше за счет коррекции частотно-контрастной характеристики.
Класс G01N21/85 исследование потоков текучих сред или гранулированных твердых материалов