способ удаления производных йодида из жидкой уксусной кислоты и/или уксусного ангидрида
Классы МПК: | C07C51/47 обработкой в системе твердое вещество - жидкость; хемосорбцией B01J41/04 способы с использованием органических обменников |
Автор(ы): | Майкл Дэвид Джоунз[GB] |
Патентообладатель(и): | Дзе Бритиш Петролеум Компани, ПЛС (GB) |
Приоритеты: |
подача заявки:
1991-10-30 публикация патента:
27.09.1995 |
Использование: очистка уксусной кислоты или уксусного ангидрида в процессах карбонилирования метанола и/или метилацетата. Сущность изобретения: йодидные производные удаляют из жидкой уксусной кислоты и/или уксусного ангидрида путем взаимодействия жидкой уксусной кислоты и/или уксусного ангидрида с сильнокислой катионообменной смолой, имеющей 4-12% сшивок. Площадь поверхности смолы в протонообменной форме составляет не менее 10 м2
г-1 после высушивания из смоченного водой состояния и площадь поверхности составляет более 10 м2
г-1 после высушивания из влажного состояния, в котором воду заменяют на метанол. В смоле по крайней мере 1% активных центров переведен в серебряную форму, предпочтительно от 30 до 70% 6 з.п. ф-лы. 3 табл.
Рисунок 1, Рисунок 2, Рисунок 3


Формула изобретения
1. СПОСОБ УДАЛЕНИЯ ПРОИЗВОДНЫХ ЙОДИДА ИЗ ЖИДКОЙ УКСУСНОЙ КИСЛОТЫ И/ИЛИ УКСУСНОГО АНГИДРИДА путем пропускания жидкой уксусной кислоты и/или уксусного ангидрида, содержащих примерно до 500 ч. на 1 млрд производных йодида, через неподвижный слой сильнокислотной катионобменной смолы, имеющей по крайней мере 1 активных центров, переведенных в серебряную форму, отличающийся тем, что используют сильнокислотную катионобменную смолу, содержащую примерно 4 12% поперечных сшивок, имеющую площадь поверхности в протонообменной форме менее 10 м2



Описание изобретения к патенту
Изобретение касается способа отделения иодидных производных, например, иодистого алкила и тому подобное, от уксусной кислоты и/или уксусного ангидрида. В частности, изобретение может быть использовано для очистки уксусной кислоты и/или уксусного ангидрида, полученных путем карбонилирования метанола и/или метилацетата с применением родия в качестве катализатора и иодистого метила в качестве активатора. Известно, что при получении уксусной кислоты и/или уксусного ангидрида путем карбонилирования метанола и/или метилацетата в присутствии катализирующей системы родий/иодистый метил, уксусная кислота и/или уксусный ангидрид часто содержат небольшие количества примесей йодида даже после перегонки. Пока определенно не известен точный состав этих соединений, возможно, они содержат смесь иодистого метила и других высших иодистых алкилов, например, иодистого гексила. Такие примеси вызывают особое беспокойство, так как они отравляют многие катализаторы, применяемые в последующих химических превращениях уксусной кислоты и/или уксусного ангидрида. Речь идет о катализаторах, применяемых для получения винилацетата из этилена и уксусной кислоты, которые чрезвычайно чувствительны к таким примесям. Известно несколько методов отделения иода и его соединений от уксусной кислоты и/или уксусного ангидрида. В патенте Великобритании N 2112394А, например, описано применение анионообменных смол, в то время, как патент США N 4615806 и ЕП N 296854 описывают удаление примесей иодидов из неводных органических сред, таких, как уксусная кислота, путем применения серебро- или ртутьсодержащих макропористых сильнокислых катионообменных смол, таких как Amberlyst 15 (Amberlyst зарегистрированный товарный знак). Однако возникает проблема при использовании заполненных серебром макропористых смол, описанных в патенте США N 4615806 и ЕП N 296584, в течение длительного времени. Эта проблема имеет особое значение при получении продуктов с очень низким содержанием иодида (например, менее 20 ч. на биллион (ppb) из сырья, содержащего до 10 ч. на миллион (ppm)). В этих случаях обнаружено, что хотя заполненные серебром макропористые смолы изначально очень эффективны, их эффективность значительно уменьшается через относительно короткий промежуток времени. На практике это снижение эффективности делает смолу непригодной задолго до того, как произойдет использование всего включенного серебра. Было обнаружено, что эту задачу можно решить путем использования определенных ионообменных смол, имеющих промежуточные свойства между макропористыми смолами с одной стороны, и гелевыми смолами с другой. Такие смолы, далее названные мезопористыми смолами, характеризуются относительно низким количеством поперечных связей, а также тем, что хотя при высушивании из полярного растворителя, такого как вода, они имеют структуру, близкую к гелю, их пористую структуру можно сохранить, если перед высушиванием воду заменить на менее полярный растворитель, такой как метанол. Предлагаемое изобретение касается способа отделения иодидных производных от жидкой уксусной кислоты и/или уксусного ангидрида, включающего взаимодействие жидкой уксусной кислоты или уксусного ангидрида с сильнокислой катионообменной смолой, имеющей приблизительно 4-12% сшивок, в которой площадь поверхности ее протонообменной формы составляет менее 10 м2





I. Способы высушивания смол
Способ А. Высушивание смолы из смоченного водой состояния. Образец, содержащий 100 мл смоченной водой смолы, нагревали при 105оС для достижения конечного давления приблизительно 0,5 мБар ртути после 4 ч. Способ Б. Высушивание смолы из смоченного метанолом состояния. Образец, содержащий 100 мл смоченной водой смолы промывали на крупнозернистом шлаке семью объемами метанола (приблизительно в течение 5-10 мин). Затем смоченную метанолом смолу нагревали до 50оС под давлением 20 мм рт.ст. в течение 30 мин, а затем при 105оС для достижения конечного давления приблизительно 0,5 мБар ртути после 4 ч. II. Измерения площади поверхности. Способы А и Б применяли к образцам смол Purolite С145 (мезопористая), Amberlyst 15 (макропористая), Bayer K2411 (мезопористая) и Amberlite 1R120 (гелевая). Полученные продукты затем подвергали N2 BET с целью измерения площади их поверхности. ОБЩИЙ СПОСОБ ОЧИСТКИ УКСУСНОЙ КИСЛОТЫ
25 мл наполненной серебром смолы загружали в колонку (диаметром 1 см), содержащую уксусную кислоту. Слой смолы затем обрабатывали противотоком в целях удаления фракции очень мелких частиц и фракционирования частиц смолы согласно их размеру. Уксусную кислоту, в которую добавили 60 ppm йодида (йодистого гексила), предварительно нагревали до 43оС и пропускали сверху вниз через слой смолы, нагретый до 43оС. Сливная система была плотно подогнана к слою смолы в целях обеспечения полной обработки жидкости. Пробы обработанной уксусной кислоты отбирали через определенные промежутки времени и определяли содержание в них йодида методом нейтронной активации. Используя описанный выше способ, наполненные серебром варианты смол подвергали следующим испытаниям:
П р и м е р 3. Bayer K2411 (мезопористая)
Сравнительное испытание В Amberlyst 15 (макропористая)
П р и м е р 4. Purolite C145 (мезопористая)
Сравнительное испытание Г Amberlite 1R120 (гелевая)
Приведенные в табл. 3 результаты показывают, что в одинаковых условиях две мезопористые смолы (Purolite C145 и Bayer K2411) превосходят как Amberlyst 15 (макропористую смолу), так и Amberlite 1R120 (гелевую смолу) в отношении времени жизни. ОБЩАЯ МЕТОДИКА ПРОВЕДЕНИЯ ИСПЫТАНИЙ ПАРТИИ
1 мл смолы с введенным серебром, 5 мл уксусной кислоты с известным (2 ммоль) количеством иодидов (МЕ1) и тетрагидропиран (0,3 г), как внутренний стандарт, помещались в герметичный стеклянный сосуд. Определялось содержание иодида (Me1) в растворе, и сосуд нагревался до 40оС. В пробах кислоты, взятых через различные промежутки времени, методом газовой хроматографии определяли содержание иодидов (Ме1). По описанной выше методике модификации смол с введением серебра испытывали следующим образом:
Сравнительное испытание Е Эмберлит 15
Сравнительное испытание F Эмберлит 1R120
П р и м е р 5. Пуролит С145
П р и м е р 6. Бэйер К2411
П р и м е р 7. УРОС 1052 (72%) активных центров в серебряной форме)
Результаты, представленные в табл.4, показывают, что при равных условиях три мезопористые смолы (Пуролит С145, Бэйер К2411 и УРОС 1052) превосходят как Эмберлист 15 (смола макросетчатой структуры), так и Эмберлит 1R120 (смола в виде геля) в отношении начальной скорости (оцененной по количеству иодидов (Ме1), удаленному в первые 6 мин) и общей производительности по иодидам (Ме1) (количество иодидов (Ме1), удаленное за все время эксперимента). ОБЩАЯ МЕТОДИКА ПРОВЕДЕНИЯ ОЧИЩЕНИЯ УКСУСНОГО АНГИДРИДА
12 мл нагруженного серебром Пуролита СТ 145 с 35% активных центров, переведенных в серебряную форму, и 120 мл уксусного ангидрида (содержащего 431 ppm по данным нейтрон-активационного анализа иодидов) смешивали в течение 4 ч при температуре окружающей среды. Затем раствор нагревали до 80оС в течение 1 ч, охлаждали, и смолу отфильтровывали. Нейтрон-активационный анализ конечного уксусного ангидрида показал, что смола удалила 93,7% иодида. Вышеописанный эксперимент был повторен без фазы нагревания. Нейтрон-активационный анализ конечного уксусного ангидрида показал, что смола удалила 94,4% иодида.
Класс C07C51/47 обработкой в системе твердое вещество - жидкость; хемосорбцией
Класс B01J41/04 способы с использованием органических обменников