способ определения диэлектрических проницаемостей и толщин слоев многослойной среды
Классы МПК: | G01N22/00 Исследование или анализ материалов с использованием сверхвысоких частот |
Автор(ы): | Агзамов Р.З., Павлов А.В., Шустов Э.И. |
Патентообладатель(и): | Научно-исследовательский центр "Резонанс" |
Приоритеты: |
подача заявки:
1992-02-05 публикация патента:
19.06.1995 |
Использование: в области измерения характеристик слоистых сред, для поверхностного зондирования слоистых структур земли, измерения характеристик слоистых покрытий. Сущность изобретения: способ измерения диэлектрических проницаемостей и толщин слоев многослойной среды заключается в том, что в сторону многослойной среды под первым углом падения излучают n когорентных зондирующих сигналов на n частотах, принимают n первых зондирующих сигналов, отраженных от многослойной среды под углом, равным первому углу падения, производят преобразование во временную область принятых сигналов, выделяют пиковые временные составляющие во временном кепстре (измеряют времена выделенных пиковых составляющих первого кепстра), дополнительно в сторону многослойной среды под вторым углом падения излучают M вторых когерентных зондирующих сигналов на M частотах. Принимают M вторых зондирующих сигналов отраженных от многослойной среды под углом, равным второму углу падения, производят сачтотную фильтрацию вторых M принятых сигоналов, выделяют пиковые сачтотные состовляющие во втором кепстре (сачтотном спектре, измеряют сачтоты выделенных пиковых составляющих второго спектра (сачтотного спектра, по измеренным сачтотам выделенных пиковых составляющих определяют диэлектрические проницаемости и толщины слоев в соответствии с расчетными формулами. 6 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6
Формула изобретения
СПОСОБ ОПРЕДЕЛЕНИЯ ДИЭЛЕКТРИЧЕСКИХ ПРОНИЦАЕМОСТЕЙ И ТОЛЩИН СЛОЕВ МНОГОСЛОЙНОЙ СРЕДЫ, заключающийся в том, что многослойную среду зондируют под первым углом падения когерентными сигналами на N частотах, а принимают N сигналов на N частотах, отраженных от многослойной среды под углом, равным первому углу, осуществляют преобразование принятых сигналов во временную область, выделяют пиковые временные составляющие во временном спектре, измеряют времена выделенных пиковых временных составляющих и определяют диэлектрические проницаемости и толщины слоев, отличающийся тем, что перед преобразованием принятых сигналов дополнительно осуществляют зондирование многослойной среды когерентными сигналами на M частотах под вторым углом падения, принимают M сигналов на M частотах под углом равным второму углу падения, а диэлектрические проницаемости и толщины слоев определяют по формулам

где




K отношение диапазона частот M сигналов, осуществляющих зондирование под вторым углом падения, к диапазону частот N сигналов, осуществляющих зондирование под первым углом падения;
i номер слоя;
c скорость света в вакууме;


Описание изобретения к патенту
Изобретение относится к измерению характеристик слоистых сред и может быть использовано для подповерхностного зондирования слоистых структур Земли, измерения характеристик слоистых покрытий. Известен способ зондирования слоистых сред, в котором используются импульсные зондирующие сигналы. В этом способе толщины слоев определяются по временной задержке сигналов, отраженных от границ раздела слоев. Недостатком этого способа является то, что он не позволяет измерять диэлектрические проницаемости слоев. Неточное знание электродинамических параметров слоев приводит к неточному измерению толщин слоев. Наиболее близким способом к изобретению является многочастотный способ измерения параметров слоистых сред, заключающийся в излучении в сторону многослойной среды N когерентных сигналов на N частотах, приеме N сигналов, отраженных от многослойной среды, преобразовании принятых сигналов во временную область, выделении пиковых частотных составляющих во временном спектре, измерении частот выделенных пиковых частотных составляющих и определении диэлектрических проницаемостей и толщин слоев в соответствии с расчетными формулами. Недостатком этого способа является низкая точность измерения диэлектрических проницаемостей и толщин слоев. Целью предложенного способа является повышение точности измерения диэлектрических проницаемостей и толщин слоев. Это достигается тем, что в известном способе наряду с N первыми когерентными сигналами на N частотах дополнительно под другим углом падения к многослойной среде излучают М вторых когерентных сигналов на М частотах, принимают М вторых зондирующих сигналов, отраженных от многослойной среды под углом, равным второму углу падения, осуществляют частотную фильтрацию N первых и М вторых принятых сигналов, выделяют пиковые (импульсные) частотные составляющие (обусловленные отражениями зондирующих сигналов от границ раздела слоев) в первом и вторым полученных кепстрах/частотных спектрах. У выделенных импульсных составляющих измеряют частоты (кепстральное время) и после этого по измеренным значениям частот определяют диэлектрические проницаемости и толщины слоев в соответствии с расчетными формулами. Под частотной фильтрацией понимается операция обратного преобразования Фурье от частотной зависимости принятого суммарного сигнала либо обратное преобразование Фурье от натурального логарифма квадрата амплитудного спектра принятого сигнала в соответствии с формулой [5]Cs(q)







q кепстральное время;
S (


На фиг.1 показана геометрическая интерпретация принимаемого сигнала; на фиг. 2 типичные частотные зависимости амплитуды и фазы принимаемого сигнала; на фиг. 3 полученный на модели вертикального зондирования двухслойной среды кепстр-частотный спектр принятого сигнала; на фиг.4 схема излучения и приема сигналов в общем случае; на фиг.5 схема устройства, реализующего способ; на фиг. 6 блок схема алгоритма выделения пиковых частотных составляющих, измерения частот и расчета диэлектрических проницаемостей и толщин слоев. При вертикальном зондировании многослойной среды затухание сигнала в слоях при его распространении в обе стороны в общем случае определяется формулой:
Wзат e - j



























t1=

ti=



Характерный вид кепстра/частотного спектра приведен на фиг.3. Таким образом, известный способ позволяет определять толщины слоев при известных диэлектрических проницаемостях, либо диэлектрические проницаемости слоев при известных толщинах слоев. Однако известный способ не позволяет одновременно измерять и толщины и диэлектрические проницаемости слоев. В предлагаемом способе используется дополнительное зондирование слоистой структуры под другим углом. Схема зондирования под двумя углами показана на фиг.4. В соответствии с фиг.4 для трехслойной структуры можно записать следующие уравнения:











h




h
























х1










sin










Преобразуем систему уравнений (8)




Поскольку X1=







b




b21-




x2=



b22(1-cos2y




-b22+b22cos2y




cos2y


x1=


Таким образом:




Можно показать, что для случая многослойной среды справедлива следующая формула:




Найдем выражения для определения
cosy






b




b21-b




sin2y




sin2y





Найдем выражение для определения

siny



cosy





b



b12(a2"" a1"")2 b12 (a2" a1")2 cos2 y2" b22(a2"" a1"")2

a1"")2 sin2y2"
sin2y





Можно показать, что для случая многослойной среды справедлива следующая формула:


Формулы (10) и (12) позволяют по измеренным частотам выделенных импульсных составляющих кепстров/частотных спектров рассчитывать диэлектрические проницаемости и толщины слоев. Предлагаемый способ реализуется с помощью устройства, схема которого показана на фиг.5 (один из вариантов реализации). Устройство работает следующим образом. Передающее устройство 1 формирует N зондирующих сигналов на N частотах в диапазоне






Класс G01N22/00 Исследование или анализ материалов с использованием сверхвысоких частот