огнеупорная масса для бортовой футеровки рафинировочных электролизеров

Классы МПК:C04B35/04 на основе оксида магния
Автор(ы):, , , , , ,
Патентообладатель(и):Акционерное общество "Красноярский алюминиевый завод"
Приоритеты:
подача заявки:
1991-02-12
публикация патента:

Сущность изобретения: огнеупорная масса включает в мас.%: крупнозернистый периклаз 54-60, пылевидный периклаз 30-32, технические лигносульфонаты 6-8, боросиликатное стекло 4-6. Характеристики: предел прочности при сжатии 44-46 МПа, кажущаяся плотность 2,77-2,80 г/см3, открытая пористость 19,6-20,2%, термостойкость (800°С-вода) 4-5 теплосмен, скорость пропитки образцов электролитов 0,43-0,47 см2/c, скорость растворения образцов в электролите 2,38-2,41 мг/см2 мин. 2 табл.
Рисунок 1

Формула изобретения

ОГНЕУПОРНАЯ МАССА ДЛЯ БОРТОВОЙ ФУТЕРОВКИ РАФИНИРОВОЧНЫХ ЭЛЕКТРОЛИЗЕРОВ, включающая крупнозернистый и пылевидный периклаз и технические лигносульфонаты, отличающаяся тем, что, с целью повышения эксплуатационной надежности бортовой футеровки за счет увеличения физико-химических и физико-механических свойств, она содержит дополнительно боросиликатное стекло при следующем соотношении компонентов, мас.

Крупнозернистый периклаз 54 60

Пылевидный периклаз 30 32

Технические лигносульфонаты 6 8

Боросиликатное стекло 4 6

Описание изобретения к патенту

Изобретение относится к цветной металлургии, а именно к составам огнеупорных масс для изготовления бортовой футеровки электролизеров алюминия высокой чистоты.

Известна огнеупорная магнезиальная масса для изготовления блочной футеровки электролизеров, пpиготовленная на основе спеченного периклазового заполнителя и водного раствора полифосфата натрия.

Состав массы, мас.

Спеченный переклазовый

порошок фракции мельче 1,0 мм 62,5

В том числе фракции мельче 0,063 22

Отходы корунда фракции мельче 1,0 мм 10

Глиноземистый цемент 10

Раствор полифосфата натрия плотностью 1,35 г/см3 17 Борная кислота 0,5

Недостатки этой массы для изготовления бортовой футеровки повышенная пористость, обуславливающая высокую скорость проникновения электролита в поры футеровки и ее разбухание, растворение материала футеровки в расплаве электролита, вызывающее переход Р, Na и Mg из электролита в металл, недостаточные механическая прочность и термостойкость футеровки, ускоряющие ее разрушение.

Наиболее близкой к предлагаемому является огнеупорная масса для изготовления огнеупорных изделий, применяемых для футеровки конвертеров и других плавильных агрегатов черной и цветной металлургии, включающая, мас. периклазовый порошок фракции: 30-0,5 мм, 40-51 0,5-0,065 мм 7-18, 0,065-0,020 18-23, хромитовая руда фракции 0,01-0,001 мм 10-18, связка (сульфитно-спиртовая барда) остальное [2] Футеровка имеет недостаточно высокую надежность.

Цель изобретения повышение эксплуатационной надежности бортовой футеровки за счет увеличения физико-химических и физико-механических свойств.

Цель достигается тем, что масса для бортовой футеровки рафинированных электролизеров, включающая крупнозернистый и пылевидный периклаз и технические лигносульфонаты, дополнительно содержит боросиликатное стекло при следующем соотношении компонентов, мас.

Крупнозернистый периклаз 54-60

Пылевидный периклаз 30-32

Технические лигносульфонаты 6-8

Боросиликатное стекло 4-6

Для разработки состава огнеупорной массы были приготовлены пять смесей компонентов. Массу готовили следующим образом. В смеситель загружали крупнозернистый периклазовый заполнитель фракции < 5 мм, увлажняли лигносульфонатом, перемешивали в течение 2-3 мин, затем добавляли пылевидный периклаз фракции < 0,09 мм и перемешивали еще в течение 3-5 мин. Из однородной массы методом пневмотрамбования при давлении сжатого воздуха 0,7 МПа изготовляли образцы-балки размером 100х100х500 мм. Образцы совместно с разъемной металлической формой сушили при 120 оС в течение 10-12 ч. По окончании сушки образцы извлекали из формы и обжигали при 800оС с выдержкой 12 ч. Из обожженной балки выпиливали образцы-кубы с ребром 50 мм для исследования физико-механических свойств и образцы диаметром 15 и высотой 50 мм для определения скоростей пропитки и растворения. Скорость пропитки образцов расплавом электролита определяли по изменению во времени их электрического сопротивления.

Конкретные составы и свойства получаемых изделий представлены в табл. 1 и 2 соответственно.

Класс C04B35/04 на основе оксида магния

способ получения прозрачной керамики -  патент 2494997 (10.10.2013)
шихта для изготовления периклазошпинельных изделий -  патент 2443657 (27.02.2012)
способ получения порошка электротехнического периклаза -  патент 2433103 (10.11.2011)
магнезиальная масса для футеровки металлургических агрегатов -  патент 2292321 (27.01.2007)
применение огнеупора на основе магнезита и диоксида циркония в регенераторах ванных стекловаренных печей -  патент 2291133 (10.01.2007)
масса для изготовления основных огнеупорных изделий -  патент 2263645 (10.11.2005)
радиопрозрачный материал для антенного обтекателя -  патент 2263086 (27.10.2005)
способ получения теплонакопительных материалов -  патент 2259974 (10.09.2005)
периклазошпинельные огнеупорные изделия и способ их изготовления -  патент 2235701 (10.09.2004)
способ получения электротехнического периклаза -  патент 2224728 (27.02.2004)
Наверх