шихта для получения пористого огнеупорного материала

Классы МПК:C04B38/08 полученные добавлением пористых веществ
C04B35/10 на основе оксида алюминия
Автор(ы):, ,
Патентообладатель(и):Республиканский инженерно-технический центр порошковой металлургии
Приоритеты:
подача заявки:
1991-03-12
публикация патента:

Использование: для получения пористых теплоизоляционных материалов, работающих при высоких температурах и значительных механических напряжениях. Сущность изобретения: шихта для получения пористого огнеупорного материала содержит, мас. %: пустотелые корундовые микросферы 20 - 30; окись ниобия с размером частиц до 0,1 мкм 2 - 3; окись алюминия с размером частиц до 0,1 мкм остальное. Характеристика материала: материал обладает мелкозернистой структурой с высокой механической прочностью ( предел прочности на сжатие 460 - 550 МПа ). 2 ил., 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

ШИХТА ДЛЯ ПОЛУЧЕНИЯ ПОРИСТОГО ОГНЕУПОРНОГО МАТЕРИАЛА, включающая пустотелые корундовые микросферы и оксид алюминия, отличающаяся тем, что, с целью повышения механической прочности и снижения температуры спекания, она содержит оксид алюминия с размером частиц до 0,1 мкм и дополнительно оксид ниобия с размером частиц до 0,1 мкм при следующем соотношении компонентов, мас.%:

Пустотелые корундовые микросферы - 20 - 30

Оксид ниобия - 2 - 3

Оксид алюминия - Остальное

Описание изобретения к патенту

Изобретение относится к производству пористых керамических материалов, в частности на основе окиси алюминия, которые могут найти применение в качестве конструкционных теплоизоляционных материалов, работающих при высоких температурах и значительных механических напряжениях.

Целью изобретения является повышение механической прочности пористого материала и снижение температуры спекания.

Это достигается тем, что шихта для получения пористого огнеупорного материала, включающая пустотелые корундовые микросферы, окись алюминия, содержит окись алюминия с размером частиц до 0,1 мкм и дополнительно - окись ниобия (Nb2O5) с размером частиц до 0,1 мкм при следующем соотношении компонентов, мас.%:

Пустотелые корундовые

микросферы 20-30

Окись ниобия 2-3

Окись алюминия Остальное

Порошки окиси алюминия и окиси ниобия, используемые соответственно в качестве связки и наполнителя с размером частиц до 0,1 мкм, позволяют снизить температуру спекания пористого материала до 1600оС, что способствует торможению процессов рекристаллизации и в конечном итоге приводит к получению более мелкозернистой структуры по сравнению с прототипом и повышению механических свойств пористого материала.

Увеличение размера частиц окиси алюминия и окиси ниобия свыше 0,1 мкм приводит к необходимости повышения температуры спекания, что в свою очередь отрицательно влияет на размер зерна спеченных материалов, который растет с увеличением температуры. Изделия из таких масс имеют крупнозернистую структуру и характеризуются невысокой прочностью.

Уменьшение содержания корундовых микросфер в составе шихты ниже 20 мас. % ограничивает применение этих материалов в качестве высокотемпературных теплоизоляций вследствие их разрушения от термических напряжений. Увеличение содержания корундовых микросфер в шихте выше 30 мас.% способствует формированию прерывистого каркаса с открытой пористостью, образованного за счет частичного разрушения микросфер, что снижает механическую прочность огнеупорного материала. Уменьшение содержания окиси ниобия в шихте ниже 2 мас. % приводит к формированию крупнозернистой неоднородной структуры со сростками кристаллитов. Зерна псевдосфероидальной формы практически отсутствуют. С увеличением содержания окиси ниобия выше 3 мас.% размер зерна спеченных материалов увеличивается на порядок, что приводит к снижению механической прочности.

На фиг. 1 показана структура пористого материала, полученного из предлагаемой шихты (в качестве наполнителя - окись магния); на фиг.2 - то же, в качестве наполнителя - окись ниобия.

Введение окиси ниобия обеспечивает формирование кристаллической структуры, имеющей псевдосфероидальную форму зерна с четко выраженными границами. Плотность матричной структуры такого материала высока, о чем свидетельствует практическое отсутствие пор и наличие мест контактов (спайностей) зерен, образованных за счет сильного межзеренного сцепления. Наличие окиси ниобия оказывает положительное влияние на механическую прочность материала.

Шихту готовят следующим образом.

Предварительно тщательно смешивают окись алюминия с окисью ниобия. Микросферы с целью более равномерного распределения их по объему материала предварительно увлажняют 7% -ным водным раствором поливинилового спирта, массовая доля которого составляет 10% на сухую массу исходных смесей компонентов. К суспензии из микросфер и поливинилового спирта постепенно при постоянном перемешивании добавляют смесь окиси алюминия и окиси ниобия. Полученную массу формуют двусторонним однократным прессованием в металлической пресс-форме при давлении 60 МПа, превышение которого нецелесообразно из-за разрушения микросфер. Отформованные образцы спекают в воздушной среде при 1600оС с четырехчасовой изотермической выдержкой. Составы приготовляемых шихт и свойства огнеупорных пористых материалов, получаемых из них, приведены в таблице (примеры 1-3 - по изобретению).

Из данных таблицы следует, что при выходе хотя бы одного из компонентов предлагаемого состава за заявляемые пределы (примеры 4, 5) не удается достичь поставленной цели: прочность материала уменьшается. Прочность материала, полученного по прототипу, 230 МПа.

Таким образом, на основании высокодисперсной окиси алюминия с размером частиц до 0,1 мкм с введением окиси ниобия с размером частиц до 0,1 мкм при 1600оС может быть получен теплоизоляционный материал, обладающий по сравнению с прототипом более высокой прочностью (в 2-2,5 раза) при общей пористости 27-42%.

Шихта для получения пористого материала на основе окиси алюминия позволяет сократить потребность в дефицитных материалах и сплавах и повысить ресурс работы теплоизоляционных узлов высокотемпературных установок.

Класс C04B38/08 полученные добавлением пористых веществ

способ приготовления керамзитобетона -  патент 2528794 (20.09.2014)
состав керамзитобетонной смеси -  патент 2527974 (10.09.2014)
способ полусухого прессования гипса -  патент 2525412 (10.08.2014)
сырьевая смесь для изготовления пенобетона -  патент 2524715 (10.08.2014)
сырьевая смесь для изготовления теплоизоляционных изделий -  патент 2522563 (20.07.2014)
сырьевая смесь для изготовления пенобетона -  патент 2521685 (10.07.2014)
этинолеперлитобетон -  патент 2519249 (10.06.2014)
гипсоперлит -  патент 2519146 (10.06.2014)
способ изготовления вспененных строительных материалов -  патент 2517133 (27.05.2014)
теплоизоляционно-конструкционный полистиролбетон -  патент 2515664 (20.05.2014)

Класс C04B35/10 на основе оксида алюминия

проппант и способ его применения -  патент 2521680 (10.07.2014)
совокупность керамических частиц и способ ее изготовления (варианты) -  патент 2516421 (20.05.2014)
способ получения проппанта (варианты) и способ гидравлического разрыва пласта с использованием полученного проппанта (варианты) -  патент 2507178 (20.02.2014)
керамическое изделие и способ его изготовления -  патент 2478597 (10.04.2013)
высокопрочные расклинивающие наполнители -  патент 2473513 (27.01.2013)
способ изготовления корундовых изделий -  патент 2470896 (27.12.2012)
шихта и легированный шпинельный материал, полученный из нее -  патент 2433981 (20.11.2011)
способ получения теплоизоляционного гексаалюминаткальциевого материала -  патент 2433106 (10.11.2011)
способ изготовления вакуум-плотных изделий из керамического материала для электронной техники -  патент 2427554 (27.08.2011)
наноразмерное анионо-дефектное вещество на основе оксида алюминия для люминесцентного дозиметра ионизирующих излучений -  патент 2424273 (20.07.2011)
Наверх