термоэмиссионный тепловыделяющий элемент
Классы МПК: | H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы |
Автор(ы): | Корнилов Владимир Александрович, Синявский Виктор Васильевич, Юдицкий Владимир Давидович |
Патентообладатель(и): | Корнилов Владимир Александрович, Синявский Виктор Васильевич, Юдицкий Владимир Давидович |
Приоритеты: |
подача заявки:
1992-04-08 публикация патента:
30.11.1994 |
Использование: в атомной энергетике при создании электрогенерирующих каналов термоэмиссионного реактора-преобразователя. Сущность изобретения: внутри термоэмиссионных твэлов с газоотводной трубкой размещают геттер из тугоплавкого материала, выполненный в виде тонкостенного экрана, расположенного между топливным материалом и газоотводной трубкой. Массу геттера M выбирают из соотношения
, где
- масса топливного материала;
- массы, приходящиеся на одну молекулу (атом) геттера и двуокиси урана соответственно; x - кислородный коэффициент; к - отношение атомов геттера и кислорода в окисле; Q - тепловая мощность твэла; Вт;
- время работы. 5 з.п.ф-лы, 1 ил.
Рисунок 1




Формула изобретения
1. ТЕРМОЭМИССИОННЫЙ ТЕПЛОВЫДЕЛЯЮЩИЙ ЭЛЕМЕНТ, содержащий корпус с расположенным внутри топливным материалом из двуокиси урана, газоотводную трубку с капиллярным каналом, отличающийся тем, что внутри тепловыделяющего элемента размещен геттер из тугоплавкого материала, у которого сродство к кислороду выше, чем у материалов корпуса и газоотводной трубки, выполненный в виде тонкостенного экрана, расположенного между топливным материалом и газоотводной трубкой. 2. Элемент по п. 1, отличающийся тем, что масса M геттера выбрана из соотношенияM




+ 1,4






где MUo2+x - масса топливного материала, кг;
m , mUo2 - массы, приходящиеся на одну молекулу (атом) геттера и двуокиси урана соответственно, кг;
X - кислородный коэффициент;
K - отношение количества атомов материала геттера к атомам кислорода в окисле, образующемся в результате химического соединения;
Q - тепловая мощность твэла, Вт;

Описание изобретения к патенту
Изобретение относится к термоэмиссионному методу преобразования тепловой энергии в электрическую и может быть использовано при создании электрогенерирующих каналов термоэмиссионного реактора-преобразователя. Известны твэлы с выводом газообразных продуктов деления и летучих продуктов деления из твэла, которые содержат окисный топливный материал (ТМ), оболочку, заключающую этот топливный материал, газоотводное устройство (ГОУ), выполненное в виде трубки из тугоплавкого материала [1]. Подобные конструкции реализуются для высокотемпературных твэлов с длительным ресурсом работы, в которых ТМ имеет более высокую температуру и характеризуется большим радиальным градиентом. В качестве прототипа взят термоэмиссионный тепловыделяющий элемент ядерного реактора, содержащий корпус с расположенным внутри топливным материалом из двуокиси урана, газоотводную трубку с капиллярным каналом [2]. Основной недостаток этого твэла - низкая надежность вследствие возможности забивания капиллярного канала материалом эмиттера или газоотводной трубки вследствие конденсации и реакции восстановления в капилляре легколетучих окислов металлов (молибдена, вольфрама), из которых изготовлены эмиттерная оболочка и ГОУ. Анализ экспериментальных данных показывает, что даже в области слабого взаимодействия вольфрама с контактирующей UO2+x возможно появление фазы окислов вольфрама за счет кислорода из UO2+x. Эти окислы способствуют образованию легкоплавких эвтектик в системе U-O-W, что ускоряет проникновение урана в вольфрам. Проведенный термодинамический анализ показал усиление проникновения урана за счет появления фазы WO с последующим образованием легкоплавких эвтектик в системе U-O-W и создание условий капиллярной конденсации WO3. Целью изобретения является повышение надежности за счет предотвращения забивания капилляра материалом эмиттера и ГОУ. Цель достигается тем, что в термоэмиссионном твэле, содержащем корпус с расположенным внутри топливным материалом из двуокиси урана, газоотводную трубку с капиллярным каналом, внутри размещен геттер из тугоплавкого материала, у которого сродство к кислороду выше, чем у материалов корпуса и газоотводной трубки, выполненный в виде тонкостенного экрана, расположенного между топливным материалом и газоотводной трубкой. Масса М геттера выбрана из соотношенияM












m, m

х - кислородный коэффициент;
k - отношение количества атомов материала геттера к атомам кислорода в окисле, образующемся в результате химического соединения;
Q - тепловая мощность твэла, Вт;













При использовании в качестве геттера ниобия масс-спектрометрические исследования системы UO2,01+7,5 масс,%Nb в диапазоне температур 1690...2510оС показали, что основным содержащим ниобий компонентом пара является NbO (Nb и NbO2 соответственно в 3 и 10 раз меньше). Отсюда можно получить выражение для вычисления массы ниобия, пользуясь выражением (1). П р и м е р. Взят твэл с диаметром эмиттера 10 мм, длиной 40 мм, с оксидным топливом в виде UO2,005 массой 20 г с проектным ресурсом 3 г при тепловыделении в твэле Q=600 Вт. Для этого твэла с геттером из Та из выражения (2) получают МТа=0,12 г. Данное количество Та можно, например, напылением нанести на оболочку из тугоплавкого металла (см. чертеж) с внешней стороны. Если оболочка представляет собой цилиндр с внешним диаметром 2,5 мм и длиной 20 мм, достаточен слой Та толщиной около 46 мкм. Таким образом, предложенный твэл позволяет связать в химическое тугоплавкое соединение кислород нестехиометрии и деления, тем самым предотвратить образование окислов корпуса (эмиттера) и ГОУ, в результате чего обеспечить незабивание капилляра ГОУ материалом корпуса и ГОУ. В результате повышается надежность работы твэла.
Класс H01J45/00 Разрядные приборы, работающие как термоэлектронные генераторы