способ включения твердых высокоактивных отходов в металлическую матрицу
Классы МПК: | G21F9/28 обработка твердых радиоактивных отходов |
Автор(ы): | Арустамов А.Э., Ожован М.И., Ширяев В.В. |
Патентообладатель(и): | Московское научно-производственное объединение "Радон" |
Приоритеты: |
подача заявки:
1991-11-25 публикация патента:
30.10.1994 |
Использование: способ включения твердых высокоактивных отходов в металлическую матрицу может быть использован на специализированных пунктах, занимающихя переработкой и/или захоронением отходов. Сущность изобретения: после размещения в емкости хранилища радиоактивных отходов их заливают металлическим расплавом, состоящим из компонентов, взаиморастворяющихся друг в друге, с плотностями, равными больше и меньше плотностей разных видов радиоактивных отходов, причем температура расплава на 200 - 250°С выше температуры самого тугоплавкого из всех входящих в расплав компонентов. После кристаллизации полученный металлоблок имеет параметры, удовлетворяющие его надежному хранению в течение времени полного распада радионуклидов. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
СПОСОБ ВКЛЮЧЕНИЯ ТВЕРДЫХ ВЫСОКОАКТИВНЫХ ОТХОДОВ В МЕТАЛЛИЧЕСКУЮ МАТРИЦУ, заключающийся в размещении отходов в резервуаре хранилища, заливке их расплавом, отверждении расплава в резервуаре и последующем повторении этих операций до полного заполнения резервуара, отличающийся тем, что используют расплав взаиморастворяющихся друг в друге металлов с плотностями выше и ниже плотности отходов, в который дополнительно включают взаиморастворяющийся или способный образовывать с компонентами расплава твердые растворы металлический компонент с плотностью, равной плотности отходов, или группу металлических компонентов с плотностями, равными плотностям разных видов отходов, включенных в металлическую матрицу, при этом объем расплава дополнительного металлического компонента или металлических компонентов, входящих в группу, берут на 20 - 50% больше объема отходов в соответствии с соотношениемVp


где Vр - объем расплава металлического компонента с плотностью, равной плотности фиксируемых в матрице отходов или каждого вида отходов, входящих в захораниваемую группу отходов, см3;
h - высота слоя отходов или каждого вида отходов, входящих в группу фиксируемых в металлической матрице, см;
D - диаметр резервуара хранилища, см;
b - коэффициент, показывающий долю объема, занимаемого группой отходов в одном слое,
при этом заливку осуществляют расплавом, температура которого на 200 - 250oС выше температуры самого тугоплавкого из всех входящих в расплав компонентов.
Описание изобретения к патенту
Изобретение относится к охране окружающей среды, в частности к переработке твердых высокоактивных отходов путем включения их в металлические матрицы. Наиболее эффективно способ может быть использован на пунктах захоронения радиоактивных отходов при захоронении отработавших источников ионизирующего излучения. Способы включения радиоактивных отходов высокого уровня активности в металлические матрицы уже известны. Известен способ обработки высокоактивных отходов с последующим включением их в металлическую матрицу [1]. Сущность известного способа заключается в том, что кальцинированные или остеклованные радиоактивные отходы включают в металлическую матрицу в экранированном (снабженном радиационной защитой) металлическом контейнере с последующим направлением его на захоронение, причем подача матричного металла в контейнер осуществляется различными способами, одним из которых является заливка радиоактивных отходов расплавом матричного металла. Недостатками данного способа являются радиационная опасность для обслуживающего персонала, невозможность увеличения удельной активности захораниваемого материала в объеме матрицы за счет опасности роста температуры матричного металлоблока. Известен способ обработки радиоактивных металлов. Сущность способа заключается в плавлении нерастворимых частиц радиоактивных металлов на горячем слое порошка матричного металла или сплава до образования соединения металлов матрицы с радиоактивными металлами [2]. Недостатками данного способа являются радиационная опасность для обслуживающего персонала; повышенный унос радионуклидов в процессе плавления радиоактивных металлов; необходимость создания дополнительного изолирующего барьера вокруг матрицы с радиоактивными металлами, что снижает технико-экономические характеристики процесса; возможность загрязнения окружающей среды, обусловленная выщелачиванием радиоактивных металлов непосредственно с поверхности получаемого металлического блока. Наиболее близким по технической сущности к заявляемому способу является способ фиксации отработавших источников ионизирующего излучения, помещенных в хранилище колодезного типа, путем порционной заливки их расплавом свинца или его сплавами в резервуаре хранилища, при этом включение их в металл проводят до полного заполнения объема резервуара хранилища [3]. Недостатками этого способа являются образование системы микротрещин в объеме матрицы на границе контакта слоев в результате порционной подачи расплава металла, что может привести к миграции радионуклидов в окружающую среду; контакт между фиксируемыми в матрице источниками ионизирующего излучения, что приводит к неравномерному распределению радиационных полей по высоте резервуара хранилища; улетучивание радионуклидов в окружающую среду за счет тепловых конвекционных потоков вследствие долговременного воздействия высоких температур на источники ионизирующего излучения при порционной подаче расплава металла. Указанные недостатки приводят к снижению безопасности захоронения и возможности загрязнения окружающей среды радионуклидами. Целью изобретения является повышение безопасности хранения металлоблока с фиксированными в нем радиоактивными отходами. Цель достигается тем, что размещенные в резервуаре хранилища твердые высокоактивные отходы заливают расплавом, состоящим не менее чем из трех взаимно растворимых друг в друге видов металла и/или его сплавов, с плотностями равной, ниже и выше плотности фиксируемых в матрице отходов, при этом объем расплава компонента с плотностью, равной плотности отходов, берут на 20-50% больше объема отходов, определяемого по формулеVp


h - высота слоя отходов или каждого вида отходов, входящих в группу фиксируемых в металлической матрице, см;
D - диаметр резервуара хранилища, см;
b - коэффициент, показывающий долю объема, занимаемого группой отходов в одном слое, и температурой расплава на 200-250оС выше температуры самого тугоплавкого из всех входящих в расплав компонентов. Если же в состав отходов входят отходы с разными плотностями, то в матричный материал помимо металлов с плотностями выше и ниже плотности отходов подбирают металлы с плотностями, равными плотностям отдельных видов отходов, при сохранении вышеуказанного требования объема расплава для каждого вида отходов. Новым в заявляемом способе является использование не менее, чем трехкомпонентного металлического расплава, причем плотность одного из компонентов расплава равна плотности фиксируемых в нем отходов, а двух других - ниже и выше плотности отходов. При одновременном фиксировании в матричном материале нескольких видов отходов с разными плотностями в матричный материал подбирают такое количество металлов и/или сплавов с соответствующими плотностями, сколько видов отходов входят в состав фиксируемых в этом матричном материале отходов. Новым также является и то, что объем расплава металла с плотностью, равной плотности соответствующего вида отходов, берут на 20-50% больше объема отходов данного вида, определяемого по формуле
Vp


h - высота слоя отходов или каждого вида отходов, входящих в группу фиксируемых в металлической матрице, см;
D - диаметр резервуара хранилища, см;
b - коэффициент, показывающий долю объема, занимаемого группой отходов в одном слое. Указанные отличия обеспечивают не только взвешенное расположение отходов в расплаве металлического компонента с плотностью, равной плотности отходов, но и создают дополнительный барьер между слоями отходов и металлов с более высокой и более низкой плотностями, чем плотность отходов, которые после отверждения выступают как барьер, полностью предотвращающий контакт отходов с окружающей средой. Превышение объема расплава на 20% обусловлено минимальным значением компонента, позволяющим создать условия для бесконтактного распределения отходов в объеме данного компонента и создания дополнительного слоя над отходами. Превышение объема расплава на 50% обусловлено экономической целесообразностью. Объем расплава компонента в интервале 20-50% определяется временем, необходимым для безопасного хранения отходов до их полного распада в случае полного разрушения дополнительного барьера за счет коррозии. Новым также является то, что температура многокомпонентного расплава, используемого для заливки, должна быть выше температуры плавления самого тугоплавкого металла, входящего в матричный материал, на 200-250оС, так как это обеспечивает свободное проникновение расплава в отходы и приведение их во взвешенное состояние в соответствующем слое расплава. Кроме того, проведение процесса фиксации будет зависеть от растворимости используемых металлов и/или сплавов. Если растворимость компонентов < 50%, то возможно их совместное плавление и подача в резервуар. Если растворимость компонентов матричной системы > 50%, необходимо осуществлять подачу компонентов в следующей последовательности: первоначально подают компонент с плотностью больше плотности самой тяжелой части твердых высокоактивных отходов, затем подаются части металлической системы с плотностями, соответствующими плотностям частей твердых высокоактивных отходов, начиная с тяжелого компонента, последней подается самая легкая часть многокомпонентной системы. Фиксация отходов высокого уровня активности в такой многокомпонентной металлической системе обеспечивает после отверждения расплава с отходами многослойный металлоблок с физико-химическими параметрами, исключающими возможность разрушения, а также расслоение этого металлоблока в процессе хранения. Предлагаемый способ иллюстрируется фиг.1. В хранилище 1 через загрузочную трубу 2 укладывают отходы 4 и подают расплавленную смесь, состоящую из трех компонентов 3, 5, 6 (компонентная металлическая система). Плотности компонентов металлической системы и отходов соотносятся следующим образом:





























Класс G21F9/28 обработка твердых радиоактивных отходов