способ определения структурных характеристик проницаемых материалов и устройство для его осуществления
Классы МПК: | G01N15/08 определение проницаемости, пористости или поверхностной площади пористых материалов |
Автор(ы): | Девисилов В.А., Синцов А.Л. |
Патентообладатель(и): | Девисилов Владимир Аркадьевич, Синцов Александр Леонидович |
Приоритеты: |
подача заявки:
1991-06-06 публикация патента:
30.07.1994 |
Использование: контрольно-измерительная и экспериментальная техника для исследования проницаемых материалов. Сущность изобретения: образец помещают в испытательную камеру между заполненными жидкостью и газом полостями. Удаляют из образца жидкость путем его заполнения газом, измеряют при этом разность давлений на образце и, зная коэффициент поверхностного натяжения жидкости и контактный угол смачивания, рассчитывают эквивалентный капиллярный диаметр пор. При удалении жидкости из образца замеряют ее расход и, предварительно определив количество пор на единицу площади образца и площади самого образца, определяют положение мениска жидкости в порах от времени испытания. После этого определяют соответствие структурных характеристик проницаемого материала координате положения мениска в порах. Удаление жидкости из пор осуществляют ступенчато с паузами, а разность давлений на образце фиксируют во время пауз. После испытания образец переворачивают и испытание повторяют вновь. Координату положения мениска, которой соответствуют данные структурные характеристики, определяют как среднее арифметическое от координат, полученных в двух испытаниях. Устройство представляет собой камеру с жидкостной и газовой полостями, сообщенными с датчиком разности давления. Устройство для удаления жидкости из образца выполнено в виде однопоршневой гидравлической машины, а датчик для определения расхода удаляемой жидкости - в виде датчика перемещения поршня гидравлической машины. Зная диаметр поршня и его ход можно в любой момент определить расход жидкости. 2 с. и 3 з.п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Способ определения структурных характеристик проницаемых материалов, заключающийся в том, что образец материала, заполненного жидкостью, помещают в испытательную камеру между заполненными газом и жидкостью полостями, удаляют из него жидкость путем вытеснения ее газом, измеряя при этом разность давлений
d =

где




X=



и определяют соответствие структурных характеристик проницаемого материала координате X. 2. Способ определения структурных характеристик по п.1, отличающийся тем, что удаление жидкости из образца производят ступенчато с паузами, а разность давлений фиксируют во время пауз. 3. Способ по п.1, отличающийся тем, что после удаления жидкости из образца его переворачивают и повторяют испытание, а координату X, которой соответствует данный эквивалентный капиллярный диаметр d, определяют как среднее арифметическое от координат, полученных в двух испытаниях. 4. Устройство для определения структурных характеристик проницаемых материалов, содержащее испытательную камеру, разделенную испытуемым образцом на газовую и герметичную жидкостную полости, соединенные с датчиком разности давлений, отличающееся тем, что, с целью расширения возможностей исследования за счет определения распределения структурных характеристик по толщине образца, устройство снабжено насосом с приводом и датчиком расхода, соединенными с испытательной камерой. 5. Устройство по п.4, отличающееся тем, что насос выполнен в виде однопоршневой гидравлической машины, а датчик расхода в виде датчика перемещения поршня гидравлической машины.
Описание изобретения к патенту
Изобретение относится к контрольно-измерительной и экспериментальной технике и может быть использовано для контроля и определения структурных характеристик, в частности пористости, диаметра пор, удельной поверхности пор, зависимости эквивалентного капиллярного диаметра пор по толщине проницаемого материала, в металлургической, целлюлозно-бумажной и других отраслях промышленности, а также в экспериментальных исследованиях, преимущественно для материалов, получаемых из тканых сеток, например пористых сетчатых металлов. Известный способ ртутной порометрии, основанный на заполнении пор ртутью, имеет очень ограниченное применение из-за токсичности ртути [1]. Наиболее близкий по технической сущности способ и наиболее близкое по конструктивным особенностям устройство описаны в [2]. Способ заключается в том, что после пропитки образца из исследуемого материала жидкостью он устанавливается в испытательной камере, так, что делит ее на две полости. Одна из полостей заполняется жидкостью, а во вторую подается сжатый газ. Давление газа повышают до тех пор, пока пузырек газа не проникнет через образец в жидкость. Замерив давление Р, при котором происходит прорыв пузырька, определяемый визуально, зная коэффициент поверхностного натяжения жидкости

d=




d = (4



Новыми приемами являются предварительное определение числа пор на единицу площади образца n и его площади So. Далее после установки образца жидкость из герметичной полости испытательной камеры откачивают, замеряя ее расход

X=














Х


Устройство для определения зависимости эквивалентного капиллярного диаметра по толщине проницаемого материала содержит известные испытательную камеру, разделенную образцом на газовую и заполненную жидкостью герметичную полости, и датчик разности давлений, сообщающийся с указанными полостями. Новым в устройстве является насос, соединенный с жидкостью полостью через датчик расхода. Целесообразно насос выполнять в виде снабженной приводом однопоршневой машины, а датчик расхода среды - в виде кинематически соединенного с поршнем датчика перемещений. На фиг. 1 изображена структурная схема устройства для определения характеристик проницаемых материалов; на фиг.2 - конструктивная схема установки для определения структурных характеристик проницаемых материалов; на фиг.3 в увеличенном масштабе изображена пора в проницаемом материале. Устройство для определения структурных характеристик проницаемых материалов представляет собой испытательную камеру 1, которая содержит заполненную газом полость 2 и заполненную жидкостью герметичную полость 3. Между полостями 2, 3 установлен образец 43 из исследуемого материала. Полости 2, 3 сообщаются с датчиком 5 (измерительным прибором) разности давления. Жидкостная полость 3 через датчик (измеритель) расхода 6 соединена с насосом 7, на выходе которого имеется сборная емкость 8. Установка для определения структурных характеристик проницаемых материалов (см. фиг.2) состоит из испытательной камеры 11, содержащей полукамеры 12, 13 с газовой и жидкостными полостями 14, 15. Образец 16 установлен между полостями 14, 15 с помощью уплотнительных элементов 1. Эластичное кольцо 18 герметизирует боковую поверхность образца. Полукамеры 12, 13 соединены посредством болтов 19 с гайками. Поршень 20 насоса 21 соединен с приводом (на чертеже не показан) с помощью рейки 22 и шестерни 23. Кроме этого, поршень 20 соединен с датчиком перемещения, в качестве которого можно использовать переменный резистор 24. Датчик разности давлений 25 сообщается с полостями 14, 15. Сухой образец 16 устанавливается в испытательную камеру 11 и герметично закрепляется в ней. Поршень 20 в это время находится в крайнем нижнем положении, а полость 15 и сообщающаяся с ней полость насоса 21 заполнены жидкостью с известными характеристиками


So = 0,25










Очевидно, что откачиваемая насосом жидкость удаляется из пор. Учитывая то, что количество пор на образце известно, можно определить расход жидкости из одной поры





Разность давлений на образце будет суммой двух составляющих:
капиллярного давления, определяемого положением мениска в поре;
гидравлического сопротивления, обусловленного движением жидкости по поре (очевидно, что гидравлическим сопротивлением движению газа можно пренебречь), т.е.







Используя зависимость (1) можно определить
d(


Хотя пора имеет в общем случае довольно сложную форму, ее поперечное сечение при осушении близко к овалу, так как в поре остается перпендикулярная жидкость, которая заполняет все узкие участки. Таким образом моно найти примерную зависимость площади поры по времени
S = 0,25








X=




После простых преобразований из формулы (3) получается зависимость (2), позволяющая найти зависимость Х(




Х"" = Х -

Х2 = В - Х", в этом случае значения Х2 будут завышены на


Х"" = (Х + Х2)


Использование данного изобретения позволяет определить зависимость эквивалентного капиллярного диаметра пор от координаты по толщине проницаемого материала;
определить суммарный объем пор в образце, который равен объему жидкости, закаченной в образец во время пропитки, т.е. Vпор = Sп

определить объем остаточной (пендулярной) жидкости в материале
Vперпенд. = Sп(l+* - l-);
определить точное значение диаметра пор, который по определению равен минимальному эквивалентному капиллярному диаметру. При этом из эксперимента устраняется субъективный фактор - визуальное определение момента прорыва газа через образец;
определить зависимость гидравлического сопротивления по толщине образца, для чего после определения зависимости d(X) необходимо повторить опыт при более быстром ходе поршня 20. Оборудование для реализации описанного способа исключает элементы, работающие под давлением газа, что упрощает устройство и повышает безопасность работы; работа установки, получение экспериментальных зависимостей и их обработка легко автоматизируется; возможность пропитки образца во время исследований, непосредственно в испытательной камере повышает производительность труда исследователей.
Класс G01N15/08 определение проницаемости, пористости или поверхностной площади пористых материалов