способ управления процессом дуговой сварки неплавящимся электродом в среде защитных газов с подачей присадочной проволоки
Классы МПК: | B23K9/10 прочие электрические схемы для дуговой сварки или резки; защитные схемы; дистанционное управление |
Автор(ы): | Погорелов В.П. |
Патентообладатель(и): | Научно-исследовательский институт авиационной технологии и организации производства |
Приоритеты: |
подача заявки:
1991-03-27 публикация патента:
30.07.1994 |
Использование: способ относится к сварке, а именно к автоматическому регулированию и управлению электрическим режимом процесса электродуговой сварки неплавящимся электродом в среде защитных газов при реализации режимов пульсирующего постоянного тока. Сущность изобретения: периодически снимают реальную вольтамперную характеристику дуги в интервале нарастания сварочного тока в каждом макроимпульсе. Определяют среднее значение отклонения ее от эталонной вольтамперной характеристики в темпе с процессом. Формируют управляющий сигнал и воздействуют им на электропривод перемещения горелки до достижения минимума рассогласования. При этом в каждом такте измеряют ток и напряжение присадочной проволоки. Регулируют электрическую мощность, подводимую к присадочной проволоке, изменением тока в ней, исходя из условий гарантированного расплавления ее конца на его удалении от поверхности сварочной ванны, равном двум диаметрам присадочной проволоки. 5 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5
Формула изобретения
СПОСОБ УПРАВЛЕНИЯ ПРОЦЕССОМ ДУГОВОЙ СВАРКИ НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ В СРЕДЕ ЗАЩИТНЫХ ГАЗОВ С ПОДАЧЕЙ ПРИСАДОЧНОЙ ПРОВОЛОКИ, при котором устанавливают неплавящийся электрод на заданном расстоянии от свариваемых деталей, возбуждают дугу между неплавящимся электродом и свариваемыми деталями, получают сварочную ванну и подают в зону сварки присадочную проволоку, подогревают от дополнительного источника тока, отличающийся тем, что с целью повышения качества сварного шва и расширения функциональных возможностей, в цепь питания неплавящегося электрода подают пульсирующий ток, возбуждают дугу между присадочной проволокой и поверхностью сварочной ванны, на каждом интервале нарастания пульсирующего тока для нескольких конкретных значений тока измеряют напряжение на дуге и сравнивают эти напряжения с заданными, соответствующими тем же значениям тока, вычисляют среднюю разность отклонений напряжения за интервал нарастания тока, полученную среднюю разность преобразуют в сигнал, по которому изменяют длину дуги неплавящегося электрода, причем в каждом такте измеряют ток подогрева проволоки и напряжение подогрева, вычисляют мгновенную мощность как произведение этих тока и напряжения, вычисляют среднюю мощность подогрева за несколько тактов и сравнивают ее с эталонной мощностью, а полученную разность мощностей преобразуют в сигнал, по которому изменяют ток подогрева.Описание изобретения к патенту
Изобретение относится к сварке, а именно к автоматическому регулированию и управлению электрическим режимом процесса электродуговой сварки наплавляющимся электродом в среде защитных газов и, может найти применение в машиностроении, судостроении и авиастроении. Наиболее близким по своей технической сущности к изобретению является способ дуговой сварки мартенситных сталей в защитном газе [1], включающий плавление основного металла и подачу дополнительной проволоки, при котором дополнительную проволоку берут из материала ферритного класса, нагревают ее пропусканием тока от дополнительного источника до температуры солидуса бездуговым способом и подают в хвостовую часть сварочной ванны перпендикулярно ее поверхности, при этом осуществляют регулирование путем изменения расстояния между электродом и дополнительной присадочной проволокой. Недостатком этого способа является пониженное качество сварного шва, обусловленное узкими функциональными возможностями в части управления процессом дуговой сварки, так как в нем не предусмотрены операции контроля подводимой мощности к наплавляющемуся электроду и дополнительной проволоке и операции регулирования тока подогрева дополнительной проволоки в режиме пульсирующего тока неплавящегося электрода. Целью изобретения является повышение качества сварного шва и расширение функциональных возможностей способа путем регулирования тока подогрева дополнительной присадочной проволоки в режиме пульсирующего тока неплавящегося электрода. Это достигается тем, что применяют способ управления процессом дуговой сварки неплавящимся электродом в среде защитных газов с подачей присадочной проволоки, при котором устанавливают неплавящийся электрод на заданном расстоянии от свариваемых деталей, и возбуждают основную дугу между неплавящимся электродом и свариваемыми деталями на дежурном токе ведут сварку на номинальном токе электрода с постоянной скоростью. При этом подают в зону основной дуги и сварочную ванну с постоянной скоростью присадочную проволоку, которую подогревают, пропуская по ней через дополнительную дугу подогрева от отдельного источника подогрева, причем в режиме пульсирующего тока наплавляющего электрода в зависимости от технологических условий сварки выбирают параметры присадочной проволоки и эталонную характеристику дуги неплавящегося электрода. Возбуждают дугу между присадочной проволокой и поверхностью сварочной ванны, снимают реальную вольтамперную характеристику основной дуги при выбранных параметрах присадочной проволоки, для чего на интервале нарастания тока в каждом такте измеряют ток и напряжение неплавящегося электрода, определяют среднее значение отклонения реальной вольтамперной характеристики от эталонной для всех тактов интервала нарастания тока, по среднему значению отклонения формируют управляющее воздействие. Сpеднее значение отклонения реальной вольтамперной характеристики от эталонной компенсируют полученным управляющим воздействием путем соответствующего изменения расстояния между неплавящимся электродом и поверхностью сварочной ванны. В каждом такте измеряют ток и напряжение присадочной проволоки и регулируют электрическую мощность, подводимую к присадочной проволоке, изменяя ток в цепи присадочной проволоки, исходя из условия гарантированного расплавления конца присадочной проволоки на его удалении от поверхности сварочной ванны, равном двум диаметрам присадочной проволоки. Эталонную вольтамперную характеристику определяют следующим образом: для заданного расстояния между электродом и изделием в каждом такте задают ряд последовательно возрастающих значений тока электрода и регистрируют реальные значения тока и напряжения на дуге, при этом снятие эталонной вольтамперной характеристики осуществляют для упомянутых заданных неизменных значений скорости подачи присадочной проволоки и соответствующего ее номинального тока подогрева, а последовательно возрастающие значения тока неплавящегося электрода устанавливают такими же по величине, что и в процессе сварки. На фиг. 1 представлена функциональная схема сварочной установки с устройством автоматического управления на основе управляющей микроЭВМ; на фиг. 2 - графики вольтамперных характеристик сварочной дуги для различных значений величины дугового промежутка; на фиг. 3 - способ представлен схематично временными диаграммами импульсов напряжения синхронизации (а), импульсов сварочного тока (б) и временными соотношениями тактов и циклов управления (г); на фиг. 4 - процесса дуговой сварки на интервале импульса тока дуги неплавящегося электрода; на фиг. 5 - то же, на интервале паузы тока дуги неплавящегося электрода. Микрокомпьютерное устройство для управления процессом дуговой сварки неплавящимся электродом в среде защитных газов содержит в своем составе сварочную установку 1, управляющую микроЭВМ 2 (микрокомпьютер), включающую микропроцессор 3, блок 4 памяти, блок 5 управления устройствами ввода и вывода информации, параллельный интерфейс 6, блок 7 синхронизации с сетью, блок 8 формирования заданий и коэффициентов и блок 9 сопряжения микрокомпьютера 2 с объектом управления. Блок 9 сопряжения содержит блок 10 гальванического разделения, блок 11 контроллера, блок 12 таймеров, блок 13 вывода дискретных сигналов, блок 14 ввода дискретных сигналов, блок 15 цифроаналогового преобразования, блок 16 коммутации аналоговых сигналов и блок 17 аналого-цифрового преобразования. Сварочная установка 1, представляющая собой объект управления для микрокомпьютера, содержит сварочную головку 18 с неплавящимся электродом 19, механизм 20 перемещения головки 18 с неплавящимся электродом, электродвигатель 21, усилитель 22 мощности, детали свариваемого изделия 23, источник 24 тока неплавящегося электрода, шунт 25, согласующий преобразователь 26 токового сигнала и согласующий преобразователь 27 сигнала напряжения дуги. Совокупность механизма 20 перемещения, электродвигателя 21 и усилителя 22 мощности представляет собой позиционный электропривод 28 перемещения сварочной горелки. Этот электропривод имеет аналоговый вход 29 задания величины перемещения, являющийся входом усилителя 22 мощности, по которому на последний подается управляющий аналоговый сигнал напряжения с первого выхода 30 блока 15 цифроаналогового преобразования. Кодовый выход 31 блока 13 распределения и усиления отпирающих импульсов подключен к входу 32 управления отпиранием полупроводниковых вентилей (тиристоров) источника 24 питания. Выходы преобразователей токового сигнала 26 и сигнала напряжения 27 подсоединены соответственно к первому 33 и второму 34 аналоговым входам блока 16 коммутации аналоговых сигналов. Шунт 25 и согласующий преобразователь 26 токового сигнала образуют датчик 35 тока неплавящегося электрода 19. Сварочная головка 18 перемещается относительно свариваемого изделия 23, на ней укреплен неплавящийся электрод 19, параллельно которому движется присадочная проволока 36, которая сматывается с помощью подающих роликов 37 механизма 38 подачи присадочной проволоки с катушки 39. Входные силовые клеммы сварочного источника 24 подсоединены к цеховой трехфазной питающей сети (фиг. 1). Первая выходная клемма 40 источника 24 питания основной дуги подсоединена через шунт 25 к свариваемому изделию 23, вторая выходная клемма 41 - к держателю 42 неплавящегося электрода 19. На сварочной головке смонтированы электродержатель 42, токосъемник 43, изолирующая трубка 44, сопло 45, через которое в зону сварки подается защитный (инертный) газ. В процессе сварки между неплавящимся электродом 19 и свариваемым изделием 23 непрерывно горит основная дуга 46, под воздействием которой на изделии образуется ванна 47. Ток неплавящегося электрода 19 замыкается на свариваемое изделие 23 через столб дуги 46 и активное пятно 48 дуги, располагающееся на сварочной ванне. Механизм 38 подачи присадочной проволоки с подающими роликами 37, электродвигатель 49 и усилитель 50 мощности представляет собой регулируемый по скорости электропривод 51 подачи присадочной проволоки, обеспечивающий регулирование скорости ее подачи в сварочную ванну 47 по определенному закону. Этот электропривод имеет аналоговый вход 52 задания скоростей электродвигателя 49 и подачи присадочной проволоки, являющийся аналоговым входом усилителя 50 мощности; через вход 52 на последний подается управляющий сигнал напряжения. Второй выход 53 блока 15 цифроаналогового преобразования подключен к аналоговому входу 52 задания скорости электродвигателя 49. Источник 54 подогрева присадочной проволоки может иметь различные структуру и характеристики. В рассматриваемом устройстве в качестве примера выбран управляемый входным аналоговым сигналом стабилизатор постоянного или пульсирующего тока. Силовые входы источника 54 подключены к цеховой трехфазной питающей сети, выходная силовая клемма 55 - к изделию 23, выходная силовая клемма 56 через силовые клеммы шунта 57 - к токосъемнику 43, измерительные клеммы шунта 57- к входам согласующего преобразователя 58 токового сигнала, выход которого подсоединен к третьему входу 59 блока 16 коммутации аналоговых сигналов. Третий выход 60 блока 15 цифроаналогового преобразования подключен к аналоговому входу 61 задания величины тока подогрева присадочной проволоки источника 54. Входы второго согласующего преобразователя 62 сигнала напряжения подсоединены к изделию 23 и токосъемнику 43, а выход - к четвертому входу 63 блока 16 коммутации аналоговых сигналов. Шунт 57 и согласующий преобразователь токового сигнала 58 образуют датчик 64 тока присадочной проволоки. Согласующие преобразователи 26, 27, 58, 62 выполняют функции гальванического разделения, усиления и нормализации измеренных токовых сигналов и сигналов напряжения. Данное устройство предназначено для осуществления предлагаемого способа управления процессом дуговой сварки неплавящимся электродом в среде защитных газов с подачей присадочной проволоки. Существо предложенного способа заключается в следующем. В начале процесса сварки устанавливают неплавящийся электрод на заданном расстоянии от свариваемых деталей, возбуждают основную дугу между неплавящимся электродом и свариваемыми деталями на дежурном токе электрода и затем ведут сварку на номинальном токе электрода, подавая в зону дуги с постоянной скоростью присадочную проволоку, которую подогревают, пропуская по ней через дугу ток подогрева от отдельного источника подогрева постоянного тока. В режиме пульсирующего тока задают эталонную вольтамперную характеристику основной дуги от неплавящегося электрода для заданного неизменного значения скорости подачи присадочной проволоки. При регулировании сварочного тока неплавящегося электрода снимают реальную динамическую вольтамперную характеристику основной дуги для заданного неизменного значения скорости подачи присадочной проволоки, для чего на интервале нарастания тока в каждом такте измеряют ток и напряжение неплавящегося электрода, сравнивают с эталонной вольтамперной характеристикой, определяют среднее значение отклонения реальной вольтамперной характеристики от эталонной для всех тактов интервала нарастания, формируют управляющее воздействие, пропорциональное среднему значению отклонения, и компенсируют этим воздействием среднее значение отклонения путем соответствующего изменения расстояния между неплавящимся электродом и свариваемыми деталями. При этом генерируют серию импульсов синхронизации, каждый из которых формируют в момент перехода через нуль одного из трех линейных напряжений трехфазной промышленной сети и трех их инверсий. С помощью этих импульсов разбивают во времени весь процесс автоматического управления дуговой сваркой на последовательно сменяющие друг друга К-е такты, каждые N из которых составляют j-й цикл управления, причем измерения тока и напряжения неплавящегося электрода осуществляют по переднему фронту каждого импульса синхронизации в начале каждого такта управления. На каждом j-м цикле формируют управляющее воздействие




Кэпг - коэффициент пропорциональности, зависящий от характеристик электропривода сварочной головки;





(2) где Uнэк - текущее К-е значение напряжения между неплавящимся электродом и изделием из свариваемых деталей;
Uэтк - текущее К-е значение напряжения эталонной вольтамперной характеристики для К-го значения тока;
m - число измерений за интервал нарастания импульса тока. Значение среднего отклонения





























После такта с номером К = m + 3 на электропривод подается другое управляющее воздействие
























Одновременно с операциями по стабилизации длины дугового промежутка между неплавящимся электродом и изделием выполняют операции контроля величины электрической мощности, затрачиваемой на подогрев присадочной проволоки за время одного цикла. Для этого в каждом k-м такте по переднему фронту импульса синхронизации измеряют ток iпк и напряжение Uпк присадочной проволоки и определяют мгновенную мощность qпк как произведение тока и напряжения
qпк = iпк



Затем находят среднее отклонение мощности подогрева как разность некоторого опорного максимального значения мощности Qп зад, определяемого условиями плавления присадочной проволоки, и средней мощности за цикл Qпj

Значение мощности Qп.зад имеет следующий смысл. Присадочная проволока, продвигаемая роликами механизма подачи, по направлению к сварочной ванне с постоянной заданной скоростью Vп.зад, подогревается проходящим по ней током Iпj до температуры плавления
Iпj=


(6)
Плавление проволоки происходит на ее конце, который почти касается сварочной ванны, но не доходит до нее на некоторую величину расстояния lCDп (см. фиг. 4), которая может быть различной. Образующаяся на конце проволоки капля расплавленного металла отрывается от конца проволоки и под воздействием силы веса опускается в сварочную ванну. При этом в проволоке выделяется мощность Qп, от значения которой за цикл Qпj и зависит величина дугового промежутка от конца проволоки до поверхности сварочной ванны lCDп . С увеличением мощности Qпj величина lCDпувеличивается вследствие более быстрого расплавления проволоки, с уменьшением мощности Qпj величина lCDп уменьшается. Значение мощности, при котором при неизменной скорости Vп1расплавляемый конец присадочной проволоки находится на расстоянии от поверхности сварочной ванны, равном удвоенному значению диаметра dппроволоки, т.е. lCDп = 2 dп. (7) является опорным заданным значением Qп.зад. Это значение мощности определяется экспериментальным или расчетным путем. Мощность подогрева проволоки регулируют изменяя ток подогрева Iпследующим образом:
если

если

если






Кпп - коэффициент пропорциональности, зависящий от характеристик канала передачи и источника питания подогрева присадочной проволоки;







Класс B23K9/10 прочие электрические схемы для дуговой сварки или резки; защитные схемы; дистанционное управление