коррозионностойкая сталь
Классы МПК: | C22C38/50 с титаном или цирконием |
Автор(ы): | Паршин А.М., Бардин В.А., Богданов Е.Н., Колосов И.Е., Криворук М.И., Свидерский М.Ф., Соколов Е.Н., Оленин М.И. |
Патентообладатель(и): | Центральное конструкторское бюро машиностроения |
Приоритеты: |
подача заявки:
1992-01-13 публикация патента:
15.07.1994 |
Изобретение относится к металлургии, в частности к коррозионностойкой особочистой свариваемой конструкционной стали, используемой в изделиях для хранения и транспортировки жидких и газообразных сред при температуре от минус 19,6 до плюс 200°С, применяемых в атомной энергетике, судостроении др. Сталь содержит компоненты, мас.%: углерод 0,005 - 0,15; кремний 0,1 - 0,3; марганец 1,3 - 1,8; сера 0,005 - 0,01; фосфор 0,005 - 0,015; хром 17 - 18; никель 13 - 14; медь 0,05 - 0,1; титан 0,005 - 0,03; азот 0,005 - 0,025; кислород 0,001 - 0,005; РЗМ 0,01 - 0,05; железо остальное. 4 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
КОРРОЗИОННОСТОЙКАЯ СТАЛЬ, содержащая углерод, кремний, марганец, серу, фосфор, хром, никель, железо, отличающаяся тем, что она дополнительно содержит медь, титан, азот, кислород и редкоземельные металлы при следующем соотношении компонентов, мас.%:Углерод 0,005 - 0,015
Кремний 0,1 - 0,3
Марганец 1,3 - 1,8
Сера 0,005 - 0,01
Фосфор 0,005 - 0,015
Хром 17 - 18
Никель 13 - 14
Медь 0,05 - 0,1
Титан 0,005 - 0,03
Азот 0,005 - 0,015
Кислород 0,001 - 0,005
Редкоземельные металлы 0,01 - 0,05
Железо Остальное
Описание изобретения к патенту
Изобретение относится к металлургии коррозионностойких особо чистых свариваемых конструкционных материалов, используемых в изделиях для хранения и транспортировки жидких и газообразных особо агрессивных сред при температурах от минус 196 до плюс 200оС, применяемых в космической технике, атомной и термоядерной энергетике, энергофизическом аппаратостроении, судостроении и др. Из аустенитных хромоникелевых сталей наибольшее распространение в промышленности получили стали типа Х18Н9Т (стали 08Х18Н9Т, 08Х18Н10Т 12Х18Н12Т и т.д.). Эти конструкционные материалы относительно жаростойкие и жаропрочные имеют высокое сопротивление общей коррозии и коррозионному растрескиванию, при оптимальном легировании они не склонны к межкристаллитной коррозии, относительно устойчивы против язвообразования и щелевой коррозии, а также могут быть использованы при низких и криогенных температурах. Упомянутые аустенитные стали типа 18-8Ti довольно технологичны, т.е. удовлетворительно деформируются при высоких температурах (ковка, штамповка, прошивка и т.д.), а также выдерживают холодную гибку, развальцовку, правку и т. д. Стали хорошо свариваются. В зарубежной практике используются стали упомянутых композиций, а также хромоникелевые материалы, легированные ниобием. Стали, стабилизированные ниобием, практически не имеют пористости в отличие от аустенитных материалов с титаном ("титановая" пористость). Следует также отметить, что стабилизированные ниобием стали хуже свариваются, чем аналогичные титансодержащие стали. Несмотря на высокую сопротивляемость коррозионным повреждением сталей типа 18-8 Ti, им свойственно выкрашивание карбидов титана TiC, нитридов титана TiN или его карбонитридов Ti(C,N). Это связывается как с неблагоприятным расположением карбидов (строчечность карбидов, скопления карбидов и др. ), так и со сцепляемостью их с матрицей. В местах скопления карбидов титана (и ниобия) или их карбонитридов, как правило, имеются микротрещины. Это приводит не только к снижению вязко-пластических свойств аустенитных материалов при относительно пластичной матрице, но и к потере газоплотности (особенно тонкостенных конструкций) и выкрашиванию карбидов, т.е. к ухудшению чистоты содержимого, "отравлению" его. Удаление титана, как известно, не является сложной задачей. Однако нестабилизированная титаном сталь склонна к межкристаллитной коррозии следствие образования карбидов хрома Cr23C6. Последнее требует почти полного удаления углерода. Указанное является довольно сложной проблемой, Так, за период с 1958 по 1978 гг. минимальное содержание углерода в аустенитных хромоникелевых сталях и сплавах уменьшилось с 0,08 до 0,02%. Это достигалось как чистотой матрицы (железа), так и чистотой легирующих элементов, а также применением специальных видов вакуумных переплавов. Предотвращение попадания азота неизбежно требует применения защит, т.е. исключение контакта жидкого металла с воздухом. Последнее также достигается применением чистых шихтовых материалов и специальной технологии выплавки. Качество металла и его поверхности также зависит от содержания сульфидов, оксидов, фосфидов и легкоплавких примесей. Они не только ухудшают чистоту, делают металл более легкоплавким, повышают анизотропность (например, между телом и его границами), но и способствуют вакуумной неплотности. Напpавленное распределение неметаллических включений легкоплавких двойных и тройных эвтектик делает не вакуумно-плотными материалы вдоль проката. Это особенно опасно для тонкостенных конструкций вакуумной техники, ядерной энергетики и различных специальных баллонов из коррозионностойких сталей. Приведенное показывает неизбежность применения вакуумной выплавки (вакуумно-дуговой переплав, вакуумно-индукционная выплавка, вакуумное выращивание, электронно-лучевой переплав и т.д.). Теоретические исследования и промышленный опыт показывают, что применение одного из указанных способов вакуумного переплава для достижения описанных требований неэффективно. В связи с отмеченным, необходимо как минимум двойной вакуумной переплав. Но это приводит к увеличению расхода металла, применению чистых шихтовых материалов, задолженности технологического оборудования, усложнению металлургического процесса и др., т.е. к значительному удорожанию полуфабрикатов. Снижение содержания углерода будет, как известно, способствовать увеличению количества





Указанный относительно чистый беститановый материал обычной выплавки с довольно высоким содержанием серы и фосфора может быть использован только после аустенизации для изделий не подлежащих сварке. В других случаях он подвержен межкристаллитной коррозии. Преимущество нашего подхода в создании высокочистой коррозионностойкой аустенитной стали очевидна и в связи с этим предлагается сталь при следующем содержании компонентов, мас.%: углерод 0,005-0,015 кремний 0,1-0,3 марганец 1,3-1,8 сера 0,005-0,010 фосфор 0,005-0,015 хром 17-18 никель 13-14 медь 0,05-0,10 титан 0,005-0,03 азот 0,005-0,015 кислород 0,001-0,005 РЗМ (церий+иттрий) 0,01-0,05 железо остальное
Была произведена вакуумно-индукционная выплавка стали и проведен последующий вакуумно-дуговой переплав, а затем осуществлена горячая ковка и термическая обработка. Кроме изложенного, была оценена балльность по неметаллическим включениям, исследована равномерность распределения их по сечению поковки, а также наличие трещин и оценена склонность к межкристаллитной коррозии. Результаты испытаний предложенной и известной сталей приведены в табл.1-4. Как следовало ожидать, предложенная сталь имела весьма низкое содержание неметаллических включений (табл.2). Максимальное содержание оксидов, силикатов и сульфидов было не более 1,0 балла, в то время, как сталь-прототип была более "грязной", что связывалось с более высоким содержанием упомянутых неметаллических включений. Это вызвано как более ячеистыми материалами основы (железо, хром, никель), так и сопутствующими элементами. Кроме чистоты шихтовых материалов значительное очищение предлагаемой стали по неметаллическим включениям также обусловлено и применением специального двойного вакуумного переплава: индукционная вакуумная выплавка с последующим вакуумно-дуговым переплавом. Относительно высокое содержание нитридов (и карбонитридов) в стали-прототипе (2,5 балла) и сравнительно низкое содержание их в предложенной стали (0,5-1 балла) обусловлено практическим отсуствием титана в исходных материалах. Если в предложенной стали максимальное количество титана составляет 0,03 %, т.е. следы его (табл.1), то в известной стали, хотя содержание последнего не приводится, он неизбежно в ней присутствует в количестве по крайней мере 0,1%. Изложенное указывает на неизбежность наличия фаз внедрения. Необходимо еще указать на то, что если в предложенной стали содержание азота лимитируется (не более 0,015%), то сталь-прототип выплавляется обычным способом и количество азота в ней может достигать 0,04% (и даже более). Указанное и обеспечивает относительно высокое содержание фаз внедрения в известной стали. Двойной вакуумный переплав и чистота исходных шихтовых материалов обеспечивали и равномерное распределение неметаллических включений и соединений титана (табл.3). Предложенная сталь обеспечивает высокую сопротивляемость межкристаллитной коррозии при испытании по методу АМ ГОСТ 6032-85. После провоцирующего нагрева при температуре 650оС (выдержка 1 ч), она не обнаружила склонности к межкристаллитной коррозии (табл. 4). Это значит, что изделия из этого материала могут подвергаться сварке. В то же время сталь-прототип при подобных испытаниях обнаружила проявление склонности к межкристаллитной коррозии. Небольшое содержание меди (0,05-0,1%) также способствует повышению коррозионной стойкости. А содеpжание редкоземельных металлов (церий + иттрий) в количестве 0,01-0,05% способствует не только улучшению качества металла против выкрашивания включений (особенно граничного вещества), но и их более равномерному распределению по сечению зерна. В этом случае металл делается более изотропным, что способствует повышению его деформационной способности. Ожидаемый технико-экономический эффект выразится в возможности создания новых образцов техники с улучшенными тактико-техническими данными.
Класс C22C38/50 с титаном или цирконием