способ определения численной плотности и объема элементов микроскопических структур в тканях

Классы МПК:G01N1/28 подготовка образцов для исследования
G01N33/48 биологических материалов, например крови, мочи; приборы для подсчета и измерения клеток крови (гемоцитометры)
Автор(ы):
Патентообладатель(и):Сидорин Василий Сергеевич
Приоритеты:
подача заявки:
1990-08-14
публикация патента:

Использование: в области медицины, в частности в области морфологии, и может применяться для определения численной плотности и объема элементов микроскопических структур в тканях. Сущность изобретения: проводят стереоморфометрическое исследование тканей на гистологических срезах с помощью накладных или окулярных сеток и телевизионных анализаторов изображения, при этом производят измерение в срезах доли площади, занимаемой сечениями исследуемых структур, а также количества их сечений на единицу мерной площади и количества пересечений на единицу длины мерной линии при разных величинах толщины проецируемых тканевых слоев, которые подбирают так, чтобы они были сопоставимыми с размерами измеряемых структур и относились друг к другу по толщине оптимально (1: 3) - (2: 3), что при использовании больших увеличений микроскопа достигается в одном гистологическом препарате путем изменения числовой апертуры окуляра от 1,25 до 0,6, а численную плотность изучаемых структур в тканях и их объем рассчитывают по формулам, приведенным в описании и формуле изобретения.

Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ ЧИСЛЕННОЙ ПЛОТНОСТИ И ОБЪЕМА ЭЛЕМЕНТОВ МИКРОСКОПИЧЕСКИХ СТРУКТУР В ТКАНЯХ путем стереоморфометрического исследования их на гистологических срезах с помощью накладных или окулярных сеток телевизионных анализаторов изображения, отличающийся тем, что, с целью повышения точноси способа, проводят измерение доли площади, занимаемой сечениями исследуемых структур, их количество на единицу этой площади и количество их пересечения мерной линией на единицу длины при числовой апертуре окуляра от 0,6 до 1,25, а плотность NV и объем V рассчитывают по формулам

Nv= способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765;

V= способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765,

где Pспособ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 и Pспособ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 - доля площади, занимаемая сечениями элементов структуры в препаратах при меньшей (с индексом ") и большей (с индексом "") толщине проецируемых тканевых слоев;

Nспособ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 и Nспособ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 - соответственно их количество, приходящееся на единицу площади;

способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 - количество их пересечений мерными линиями, приходящееся на единицу длины;

t - отношение большей толщины проецируемых тканей к меньшей.

Описание изобретения к патенту

Изобретение относится к области медицины, в частности к области морфологии, и может быть использовано для определения численной плотности и объема элементов микроскопических структур в тканях.

Известен способ измерения численной плотности и объема элементов микроскопических структур с помощью общепринятой стереометрической технологии. Для всех реализуемых в рамках этого способа методик общим недостатком является возникновение проекционных эффектов, снижающих точность измерения. Это накладывает жесткие ограничения на толщину применяемых гистологических препаратов и требует введения специальных поправочных коэффициентов, что не всегда технически выполнимо и часто не обеспечивает достижение нужного результата. Отрицательное влияние на результат измерения оказывает также ограничения по форме исследуемых структур, что требует обязательной предварительной ее оценки и введения дополнительных поправочных коэффициентов, удовлетворительная точность которых не всегда технически достижима.

Целью изобретения является повышение точности измерения численной плотности и объема элементов микроскопических структур в тканях.

Цель достигается за счет устранения ограничений по форме измеряемых структур и исключения артифициального влияния проекционных эффектов, возникновения которых становится необходимым технологическим условием реализации предлагаемого нового способа стереоморфометрического исследования. Поэтому толщину проецируемых в поле зрения микроскопа тканевых слоев (h) подбирают так, чтобы она способствовала большему проявлению проекционных эффектов, т. е. была сопоставимой с размерами измеряемых структур (D - диаметром). Практически целесообразно придерживаться интервала отношения h/D = 1/20 - 3/4, что обеспечивает применение способа для измерения широкого класса структур в обычных гистологических препаратах. Необходимо учитывать, что при изучении обычных гистологических препаратов под большими увеличениями оптического микроскопа толщина проецируемого в поле зрения тканевого слоя ограничивается глубиной резкости микроскопа, а не собственной толщиной препарата.

Положительный эффект достигается за счет улавливания разницы проекционных эффектов одних и тех же структур в тканевых слоях (срезах) разной толщины. Чувствительность способа в этом отношении во многом определяется природой изучаемого объекта, качеством окраски препарата и методикой стереометрического исследования. При использовании стереометрических окулярных и накладных сеток целесообразно обеспечить также оптимальную зону отношения толщины проецируемых слоев (2/3 - 1/3). При использовании современных приборов анализаторов изображения эти требования могут быть менее жесткими.

Способ осуществляется с помощью стереометрических сеток или анализатора изображения путем последовательного измерения в срезах (тканевых слоях) разной толщины доли площади, занимаемой сечениями структуры (Рр), их количества на единицу этой площади (NА) и количества их пересечений на единицу длины мерной линии (NL). Окончательный результат получают по формулам:

1) Nv= способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 и

2) V= способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765, где индексом " и "" обозначены данные, полученные соответственно в срезах меньшей и большей толщины, а t - отношение большей толщины срезов к меньшей.

При изучении микроскопических структур под большим увеличением микроскопа в оптическую систему вводят объектив с переменой апертурой (типа 06М-90 с параметрами 90 х 1,25 - 0,6 - производства ЛОМО). Измерение производят в случайно взятых полях зрения с использованием последовательно большей (Аmax) и меньшей (Аmin) числовой апертуры объектива, задавая таким образом переменную толщину проецируемого тканевого слоя (при Аmax - меньшую и при (Аmin) - большую), которую ограничивает в этом случае глубина резкости микроскопа. Последняя определяется известным расчетным способом и входящую в формулы 1 и 2 величины t находят из уравнения:

3) t = способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765, где способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 - длина волны света, n - показатель преломления среды объектива и Г - общее увеличение микроскопа.

Исследование производят с соблюдением общих требований репрезентативности и статической достоверности, принятых в стереоморфометрии. С использованием 100-точечной стереометрической сетки в большинстве случаев требуется не менее 10 полей зрения.

П р и м е р. Для оценки состояния иммунной системы у умершего от механической травмы поставлена задача измерить численную плотность лимфоцитов и объем их ядер в корковом веществе вилочковой железы.

Готовим по общепринятой технологии гистологические препараты вилочковой железы. Устанавливаем оптическую систему исследовательского микроскопа с общим 756-кратным увеличением, снаряженную масляным иммерсионным объективом ЛОМО 06М-90 (90 х 1,25 - 0,6) и измерительным окуляром с окулярной стереометрической сеткой, содержащей измерительные элементы: точки (Рт), площадь (Ат) и линии (LТ), - откалиброванной с помощью объект-микрометра. Для данной оптической системы с Аmax = 1,25, Amin = 0,6, способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 = 0,5 мкм, n = 1,515 и Г = 756 по формуле 3 находим t = 3,1.

Изучаем под микроскопом препарат и в случайно взятом (в пределах коркового вещества) поле зрения производим измерения:

1. При числовой апертуре объектива 1,25 наводим резкость изображения и без перефокусировки производим подсчет точек, пересекающих сечение ядер лимфоцитов, их количество в пределах мерной площади и количество пересечений их мерными линиями.

2. Переключаем числовую апертуру объектива на 0,6 и воспроизводим те же действия.

Переходим последовательно к следующим полям зрения и повторяем в них процедуру, суммируя результат.

В 10 полях зрения при Аmax и Amin на учтенной площади стереометрической сетки подсчитано соответственно 2356 и 2908 профилей ядер лимфоцитов, их пересечений линиями - 1331 и 1658, точками - 248 и 326. При этом общая величина Ат составила по 78880 мкм2, Lт - по 12560 мкм и общее число точек Рт - по 1000 (для Аmax и Amin).

Получаем:

NA" = 2356/78880 = 0,0299 (мкм-2) и

NA"" = 2908/78880 = 0,0369 (мкм-2),

NL" = 1331/12560 = 0,106 (мкм-1) и

NL"" = 1658/12560 = 0,132 (мкм-1)

Pp" = 248/1000 = 0,248 и

Pp"" = 326/1000 = 0,326

Подставляем полученные значения в формулы 1, 2 и рассчитываем окончательный результат:

Nv= способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765=

=0.0078 (мкм-3)=7.8/1000 мкм3;

способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 способ определения численной плотности и объема элементов   микроскопических структур в тканях, патент № 2013765 = .

Предлагаемый способ позволяет производить с высокой точностью измерения численной плотности и объема структур, приближающихся к физическим телам с односторонне выпуклой поверхностью, что характерно для широкого класса биологических объектов. Это освобождает от необходимости предварительной оценки формы измеряемых структур и расчетов поправочных коэффициентов, принятых в известных методиках стереометрического исследования. Результаты измерения могут быть дополнены точными расчетами (исключающими артифициальные влияния проекционных эффектов) других общепринятых стереометрических показателей. В частности, объемной доли структур в тканях: Vv = = Pp = VNv, которая для приведенного выше примера 27 х 0,0078 = 0,21 = 21% . Дополнительно появляются возможности получения принципиально новых расчетных показателей формы структур в тканях и другие возможности приложения, существенно расширяющие информативность стереометрического исследования.

Способ может быть использован также в металлографии и других прикладных дисциплинах небиологического профиля для решения сходных с медицинской морфометрией стереометрических задач.

Класс G01N1/28 подготовка образцов для исследования

способ изготовления реплик для исследования микростроения мерзлых пород в растровом электронном микроскопе -  патент 2528256 (10.09.2014)
способ приготовления стандартных образцов аэрозолей -  патент 2525427 (10.08.2014)
эталонный образец с контролируемым распределением напряжений по толщине -  патент 2525153 (10.08.2014)
способ патоморфологического определения давности наступления инфаркта миокарда -  патент 2518333 (10.06.2014)
призматический образец для оценки прочности материала -  патент 2516599 (20.05.2014)
устройство для улавливания биологических частиц и его применение -  патент 2516522 (20.05.2014)
способ определения коэффициента неоднородности смеси трудноразделимых сыпучих материалов -  патент 2515009 (10.05.2014)
способ диагностики синдрома инсулинорезистентности -  патент 2506889 (20.02.2014)
анализ субстратов, на которые нанесены агенты -  патент 2505798 (27.01.2014)
способ пробоотбора и пробоподготовки твердых материалов -  патент 2503942 (10.01.2014)

Класс G01N33/48 биологических материалов, например крови, мочи; приборы для подсчета и измерения клеток крови (гемоцитометры)

технология определения анеуплоидии методом секвенирования -  патент 2529784 (27.09.2014)
способ оценки эффекта электромагнитных волн миллиметрового диапазона (квч) в эксперименте -  патент 2529694 (27.09.2014)
способ прогнозирования ухудшения клинического течения идиопатической саркомы капоши, перехода хронической формы в подострую, затем в острую форму заболевания -  патент 2529628 (27.09.2014)
способ идентификации нанодисперсных частиц диоксида кремния в цельной крови -  патент 2528902 (20.09.2014)
способ диагностики метаболического синдрома у детей -  патент 2527847 (10.09.2014)
способ диагностики мембранотоксичности -  патент 2527698 (10.09.2014)
cпособ индуцированных повреждений днк в индивидуальных неделимых ядросодержащих клетках -  патент 2527345 (27.08.2014)
способ прогнозирования развития лимфогенных метастазов при плоскоклеточных карциномах головы и шеи после проведения комбинированного лечения -  патент 2527338 (27.08.2014)
способ выявления свиней, инфицированных возбудителем actinobacillus pleuropneumoniae -  патент 2526829 (27.08.2014)
способ прогнозирования развития пороговой стадии ретинопатии недоношенных у детей без офтальмологических признаков заболевания -  патент 2526827 (27.08.2014)
Наверх