двухступенчатая газомазутная горелка мартеновской печи
Классы МПК: | F23D14/38 специальные горелки, например для резки, пайки, сварки или нагрева |
Автор(ы): | Авраменко А.В., Зинченко И.Н., Захлебина С.И., Горбов А.В., Викулов А.С., Данилов В.Н., Федоренко К.И., Дзюбайло А.Н. |
Патентообладатель(и): | Сулинский металлургический завод |
Приоритеты: |
подача заявки:
1991-06-17 публикация патента:
30.05.1994 |
Сущность изобретения: горелка содержит коаксильно расположенные мазутную форсунку с выхлопной трубой первой ступени и регулируемое сверхзвуковое газовое сопло с выхлопной трубой второй ступени. Внешний контур диффузорной части сверхзвукового газового сопла присоединен к выхлопной трубе второй ступени промежуточным участком конической формы. Углы сходимости между образующими конусов промежуточного участка и выхлопной трубы первой ступени мазутной форсунки равны между собой. Длина диффузорной части газового сопла равна максимальной длине сопла Лаваля, соответствующей максимальному расходу и минимальному давлению газа перед соплом. Длина наружного конуса выхлопной трубы первой ступени равна суммарной длине диффузорной части сверхзвукового газового сопла и промежуточного участка. 2 ил.
Рисунок 1, Рисунок 2
Формула изобретения
ДВУХСТУПЕНЧАТАЯ ГАЗОМАЗУТНАЯ ГОРЕЛКА МАРТЕНОВСКОЙ ПЕЧИ, содержащая коаксиально расположенные мазутную форсунку с выхлопной трубой первой ступени и регулируемое газовое сопло с выхлопной трубой второй ступени, при этом диффузорная часть газового сопла образована по внешнему контуру участком выхлопной трубы второй ступени и по внутреннему контуру наружным конусом выхлопной трубы первой ступени мазутной форсунки, установленной с возможностью перемещения по горизонтали, отличающаяся тем, что, с целью снижения расхода топлива путем создания оптимальных скоростных характеристик факела при обеспечении соответствия геометрических размеров начальным параметрам газа, внешний контур диффузорной части сверхзвукового газового сопла присоединен к выхлопной трубе второй ступени промежуточным участком конической формы, при этом углы сходимости между образующими конусов промежуточного участка и выхлопной трубы первой ступени мазутной форсунки равны между собой, длина диффузорной части газового сопла равна максимальной длине сопла Лаваля, соответствующей максимальному расходу и минимальному давлению газа перед соплом, длина наружного конуса выхлопной трубы первой ступени равна суммарной длине диффузорной части сверхзвукового газового сопла и промежуточного участка, длина lпр которого определяется из выраженияlпр=

где rкр.max - радиус выхлопной трубы мазутной форсунки в критическом сечении при его минимальной площади, мм;
rкр.min -то же при его максимальной площади, мм;

Описание изобретения к патенту
Изобретение относится к области сжигания газообразного топлива и может быть использовано в мартеновских печах. Известна конструкция газозамкнутой горелки [1] , содержащая сопло Лаваля для получения сверхкритической скорости истечения газа. Недостаток такой конструкции - отсутствие возможности изменения площадей проходных сечений газовой сопла, что не позволяет обеспечить оптимальные скоростные характеристики факела при отклонении начальных параметров газа перед соплом (давление, расход) от расчетных значений. Известна также двухступенчатая газомазутная горелка с соосно расположенными мазутной форсункой и сверхзвуковым газом соплом [2] . Регулирование расхода распылителя осуществляется путем изменения площади критического сопла Лавала при перемещении мазутного сопла по горизонтали. Перемещением выходной трубы мазутной форсунки осуществляется изменение площади критического сечения сверхзвукового газового сопла, и, следовательно, регулирование расхода газа. Как наиболее близкая по технической сущность данная конструкция принята в качестве прототипа. Недостатком конструкции является следующее. Площади критического и выхлопного сечений сверхзвукового сопла определяются в зависимости от начальных параметров газа. Изменение начальных параметров газа приводит к несоответствию площадей проходных сечений расчетным значениям. В известной конструкции предусмотрено изменение площади критического сечения сопла в соответствии с параметрами газа перед горелкой. Однако площадь выхлопного сечения сопла остается неизменной при любых значениях давления и расхода газа. Так, при повышении давления газа перед соплом площадь критического сечения газового сопла может быть уменьшена до расчетного значения путем перемещения мазутной форсунки вправо, а площадь выходного сечения не изменяется, т. е. ее значение превышает расчетное. Вследствие этого происходит перераспределение потока газа, что ведет к потерям кинетической энергии и ухудшению скоростных характеристик факела. Эффект от повышения давления при этом не достигается. При понижении начального давления газа мазутная форсунка перемещается влево и площадь критического сечения увеличивается в соответствии с ее расчетным значением. Выходное сечение в этом случае не изменяется. При истечении газа из сопла за его пределами происходит самопроизвольное расширение потока, которое сопровождается понижением скорости газа в струе и переходом части энергии движения в теплоту, что также оказывает негативное влияние на скоростные характеристики факела. Цель изобретения - снижение расхода топлива за счет создания оптимальных скоростных характеристик факела при обеспечении соответствия геометрических размеров начальным параметрам газа. Указанная цель достигается тем, что в известной конструкции горелки, содержащей коаксиально расположенные мазутную форсунку с выхлопной трубой первой ступени в регулируемое сверхзвуковое газовое сопло с выхлопной трубой второй ступени, причем диффузорная часть газового сопла образована по внешнему контуру участком выхлопной трубы второй ступени и по внутреннему контуру наружным конусом выхлопной трубы первой ступени мазутной форсунки, имеющей возможность перемещения по горизонтали, внешний контур диффузорной части сверхзвукового газового сопла присоединена к выхлопной трубе второй ступени промежуточным участком конической формы. Углы сходимости между образующими конусов промежуточного участка и выхлопной трубы первой ступени мазутной форсунки равны между собой. Длина диффузорной части газового сопла равна максимальной длине сопла Лаваля, соответствующей максимальному расходу и минимальному давлению газа перед соплом, длина наружного конуса выхлопной трубы первой ступени равна суммарной длине диффузорной части серхзвукового газового сопла и промежуточного участка, а длина промежуточного участка определяется из выражения:lкр =

rкр min - радиус выхлопной трубы мазутной форсунки в критическом сечении при его максимальной площади, мм;


tg



rвыхmin - радиус минимального выходного сечения сопла, мм;
m - ход сопла;
m =




tg


Gmax, Gmin - максимальный и минимальный расход газа перед соплом, кг/с;

w - скорость газа в выходном сечении, м/с. Kг =


R - газовая постоянная, Н


Ргmax, Pгmin - соответственно максимальное и минимальное давления газа перед соплом, МН/м2;
Т - температура газа перед соплом, К. Расчеты показали, что для любых значений давления и расхода газа при их изменении в заданных пределах значение угла сходимости между образующим конуса промежуточного участка соответствует величине угла сходимости мазутного конуса. Из анализа геометрии профиля сопла следует, что длина промежуточного участка равна величине хода сопла m (фиг. 2), т. е. lпр = m, где m =


lпр =


r1 =

rmaкрx =


rmiкрn =


Длина промежуточного участка составляет: lпр = 20,5 мм. Полученные геометрические параметры сопла позволяют обеспечить расчетные значения критических и выхлопных площадей при колебании начальных параметров (давления и расхода) газа перед соплом в заданных пределах. Применение предлагаемой конструкции газомазутной горелки позволит повысить кинетическую энергию факела на (15. . . 20)% и, тем самым, создать оптимальные скоростные характеристики факела и тем самым сократить расход топлива на 1,5-2% .
Класс F23D14/38 специальные горелки, например для резки, пайки, сварки или нагрева
ручное газопламенное устройство (варианты) - патент 2458285 (10.08.2012) | ![]() |
способ сжигания горючей смеси и горелка для его реализации - патент 2428628 (10.09.2011) | ![]() |
способ сжигания горючей смеси и горелка для его реализации - патент 2318160 (27.02.2008) | ![]() |
горелочное устройство - патент 2310130 (10.11.2007) | ![]() |
горелка - патент 2278328 (20.06.2006) | |
горелка - патент 2278327 (20.06.2006) | |
газокислородный резак - патент 2278326 (20.06.2006) | |
газовая горелка т.л. басаргина - патент 2277672 (10.06.2006) | |
горелочное устройство (варианты) - патент 2246664 (20.02.2005) | ![]() |
газовая горелка - патент 2238475 (20.10.2004) |