тепловой двигатель
Классы МПК: | F03G7/06 использующие расширение или сокращение тел, вызываемые изменением температуры, влажности и тп |
Патентообладатель(и): | Неудахин Владимир Иванович |
Приоритеты: |
подача заявки:
1990-10-31 публикация патента:
30.05.1994 |
Использование: машиностроение, двигателестроение, холодильная техника. Сущность изобретения: внутри корпуса двигателя, выполненного в виде замкнутого объема, размещено рабочее тело, находящееся в газообразной (паровой) фазе, а также преобразующий элемент, у которого одна из двух противоположных сторон обладает свойством, вызывающим переход рабочего тела из газообразной фазы в жидкую фазу (твердую). Это приводит к нескомпенсированности суммарного импульса, передаваемого молекулами рабочего тела преобразующему элементу с рабочей стороны, суммарным импульсом, передаваемым молекулами рабочего тела преобразующему элементу со стороны, противоположной рабочей, что и обеспечивает движение преобразующего элемента относительно корпуса. 5 з. п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. ТЕПЛОВОЙ ДВИГАТЕЛЬ, содержащий замкнутый корпус, заполненный рабочим телом, находящимся при рабочей температуре в газообразной фазе, преобразующий элемент, тепловой экран, источник тепла, отличающийся тем, что, с целью увеличения КПД, преобразующий элемент выполнен в виде пластины, у которой одна из двух взаимно противоположных сторон, являющаяся рабочей поверхностью, обладает свойством перевода рабочего тела из газообразной среды в жидкую фазу. 2. Двигатель по п. 1, отличающийся тем, что преобразующий элемент выполнен в виде полупроводникового термоэлектрического преобразователя, у которого одна из двух взаимно противоположных сторон является охлаждаемой. 3. Двигатель по пп. 1 и 2, отличающийся тем, что на рабочей поверхности преобразующего элемента установлены чередующиеся диэлектрические и электропроводящие полосы, причем указанные полосы через одну соединены между собой и подключены к разноименным полюсам источника питания. 4. Двигатель по пп. 1 - 3, отличающийся тем, что преобразующий элемент снабжен приспособлением для удаления жидкой или твердой фазы рабочего тела, выполненным в виде крыльчатки, установленной на его рабочей поверхности. 5. Двигатель по пп. 1 - 4, отличающийся тем, что масса рабочего тела в рабочем объеме должна быть не менее величины, определяемой соотношением

Описание изобретения к патенту
Изобретение относится к машиностроению и может быть использовано при создании двигателей и в холодильной технике. Во всех известных тепловых двигателях [1] энергия, затраченная на повышение температуры рабочего тела, передается в виде суммарного импульса молекул рабочего тела преобразующему элементу (поршню, турбине) и может быть использована для полезной работы, уносится с отработанным рабочим телом в окружающее пространство непосредственно или через холодильник, отводится через детали двигателя, в том числе и через корпус в окружающее пространство. Известно также, что во всех известных тепловых двигателях доля энергии, уносимой с отработанным рабочим телом, составляет значительную часть общей энергии, затраченной на разогрев рабочего тела, что является причиной сравнительно низких КПД таких тепловых двигателей. В известном тепловом двигателе [2] , являющемся наиболее близким по техническому решению и содержащем замкнутый корпус, заполненный рабочим телом, находящимся при рабочей температуре в газообразной фазе, преобразующий элемент, тепловой экран и источник тепла, КПД преобразования тепловой энергии в механическую сравнительно низок из-за уносимой отработанным рабочим телом значительной части общей энергии. Целью изобретения является увеличение КПД преобразования тепловой энергии в механическую энергию. Для достижения цели преобразующий элемент выполнен в виде пластины, у которой одна из двух взаимно противоположных сторон, являющаяся рабочей поверхностью, обладает свойством перевода рабочего тела из газообразной среды в жидкую фазу. Причем преобразующий элемент может быть выполнен в виде полупроводникового термоэлектрического преобразователя, у которого одна из двух взаимно противоположных сторон является охлаждаемой. На рабочей поверхности преобразующего элемента могут быть установлены чередующиеся диэлектрические и электропроводящие полосы, причем электропроводящие полосы через одну соединены между собой и подключены к разноименным полюсам источника питания. Преобразующий элемент может быть снабжен приспособлением для удаления жидкой или твердой фазы рабочего тела, выполненным в виде крыльчатки, установленной на его рабочей поверхности. Масса рабочего тела в рабочем объеме двигателя должна быть не менее величины, определяемой соотношением



M = MБ - MА, что и обеспечивает движение преобразующего элемента 2 относительно корпуса 1. Эффективность преобразования зависит от энергетического баланса двух процессов, которые относительно независимы друг от друга: энергозатрат в единицу времени, связанных с переводом рабочего тела из газообразной фазы в жидкую фазу на поверхности 3 преобразующего элемента 2; количества кинетической энергии, получаемой в единицу времени преобразующим элементом 2 от газовой фазы рабочего тела. Энергозатраты первого процесса, связанные с переводом рабочего тела из газообразной фазы в жидкую фазу, удобно представить в виде:
E1 = (E



Eгж - скрытая теплота фазового перехода газ-жидкость рабочего тела. Величина Eгж зависит от вещества, используемого в качестве рабочего тела, а также от температуры и давления, при которых осуществляется фазовый переход. Величину Eгж также можно сделать, в принципе, как угодно малой, приближая температуру фазового перехода Tгж к Tкр;







Rт =

Tкр - критическая температура рабочего тела;
Qк - механическая мощность, отводимая от преобразователя к внешним устройствам;
Q1 - мощность, расходуемая на перевод рабочего тела из газообразной среды в жидкую фазу на рабочей поверхности 3. На фиг. 2 демонстрируется пример использования крыльчатки для удаления жидкой фазы рабочего тела с рабочей поверхности 3. Принцип действия вращающейся крыльчатки (фиг. 2), лопасти 11 которой скользят по рабочей поверхности 3 преобразующего элемента 2, традиционен: рабочее тело, сконденсированное на рабочей поверхности преобразующего элемента, за счет центробежных сил выбрасывается на периферию вращения, т. е. за пределы рабочей поверхности преобразующего элемента, в зазор 12 между преобразующим элементом 2 и корпусом 1. Реализация вращения крыльчатки может быть осуществлена, например, с использованием вращающегося диска 13 и гибкого вала 14, который связывает вращающийся диск 13 с осью крыльчатки. Вращение диска 13 осуществляется за счет фрикционной передачи между неподвижным корпусом 1 и диском 13 при движении преобразующего элемента 2 относительно корпуса 1. На фиг. 3 изображен преобразующий элемент 2, на рабочей поверхности которого сформированы токопроводящие полосы 15-20, чередующиеся с диэлектрическими полосами 21, причем электрические полосы через одну соединены друг с другом (15, 17, 19) и (16, 18, 20) и на полосы 15, 17, 19 подан положительный потенциал, а на полосы 16, 18, 20 подан отрицательный потенциал. Появляющееся на рабочей поверхности электрическое поле E увеличивает вероятность конденсации рабочего тела на рабочей поверхности преобразующего элемента. Реализация предлагаемого технического решения позволит получить тепловые двигатели с высоким коэффициентом преобразования, чем и будет обусловлена экономическая и экологическая целесообразность их использования.
Класс F03G7/06 использующие расширение или сокращение тел, вызываемые изменением температуры, влажности и тп