измерительный преобразователь неэлектрических величин с емкостным датчиком
Классы МПК: | G01R27/26 для измерения индуктивности и(или) емкости; для измерения добротности, например резонансным способом; для измерения коэффициента потерь; для измерения диэлектрических постоянных |
Автор(ы): | Пустовалов Н.Д., Кучма А.А. |
Патентообладатель(и): | Акционерное общество "ПАНХ" |
Приоритеты: |
подача заявки:
1990-08-13 публикация патента:
30.04.1994 |
Использование: в электроизмерительной технике для измерения различных неэлектрических величин и предназначено для преобразования изменений емкости рабочего конденсатора датчика в изменения постоянного напряжения. Сущность изобретения: измерительный преобразователь неэлектрических величин с емкостным датчиком содержит источник стабильного постоянного напряжения, линейный инвертор, сумматоры, генератор прямоугольного напряжения, коммутаторы, дифференциальный конденсатор, усилитель, фазочувствительный детектор. В преобразователе крайние обкладки дифференциального конденсатора запитываются противофазными прямоугольными напряжениями, формируемыми путем коммутирования выходного напряжения. Сигнал, снимаемый со средней обкладки дифференциального конденсатора, усиливается усилителем и выпрямляется фазочувствительным детектором. Выходное напряжение фазочувствительного детектора поступает на выходные зажимы преобразователя, а также это напряжение суммируется с выходным напряжением источника стабильного постоянного напряжения и тем самым образуется общая отрицательная связь преобразователя. 1 ил.
Рисунок 1
Формула изобретения
ИЗМЕРИТЕЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ НЕЭЛЕКТРИЧЕСКИХ ВЕЛИЧИН С ЕМКОСТНЫМ ДАТЧИКОМ, содержащий дифференциальный конденсатор, первый и второй сумматоры, линейный инвертор, выход которого соединен с первым входом второго сумматора, усилитель, вход которого соединен со средней обкладкой дифференциального конденсатора, фазочувствительный детектор, выход которого соединен с выходом преобразователя, отличающийся тем, что в него введены источник стабильного постоянного напряжения, генератор прямоугольного напряжения, первый и второй коммутаторы, при этом выход источника стабильного постоянного напряжения соединен с первым входом первого сумматора и с входом линейного инвертора, выход генератора прямоугольного напряжения соединен с входами управления первого и второго коммутаторов и с опорным входом фазочувствительного детектора, информационный вход которого соединен с выходом усилителя, а выход - с вторыми входами первого и второго сумматоров, выходы которых соединены с первыми входами соответственно первого и второго коммутаторов, вторые входы которых соединены с общей шиной преобразователя, а выходы - соответственно с первой и второй крайними обкладками дифференциального конденсатора.Описание изобретения к патенту
Изобретение относится к электрической измерительной технике, может использоваться для измерения различных неэлектрических величин и предназначено для преобразования изменений емкости рабочего конденсатора датчика в изменения постоянного напряжения. Известен измерительный преобразователь неэлектрических величин с емкостным датчиком, содержащий дифференциальный конденсатор, два резистора, генератор синусоидального напряжения, усилитель переменного тока, причем крайние обкладки дифференциального конденсатора подключены к выходным зажимам генератора синусоидального напряжения и к первым выводам резисторов, вторые выводы которых соединены вместе и подключены к общей шине преобразователя, а средняя обкладка дифференциального конденсатора соединена с входом усилителя переменного тока, выход которого подключен к выходным зажимам преобразователя . Недостатком известного устройства является низкая точность преобразования, обусловленная следующим. Известное устройство представляет собой мостовой неуравновешенный преобразователь, выражение преобразования информативного параметра в выходное напряжение Uвых в котором имеет вид:Uвых= U


Ky - коэффициент передачи усилителя переменного тока;
C1 и С2 - емкости дифференциального конденсатора;
R1 и R2 - сопротивление резисторов. Как видно из выражения (1), известное устройство имеет нелинейную функцию преобразования (из-за члена С1/(C2+C1)) и, кроме того, выходное напряжение Uвых зависит от нестабильностей напряжения генератора синусоидального напряжения и коэффициента передачи усилителя переменного тока. В известном устройстве выходной сигнал является напряжением переменного тока, для преобразования которого в напряжение постоянного тока используют выпрямители, что также вносит дополнительную погрешность преобразования. Известен также принимаемый за прототип измерительный преобразователь неэлектрических величин с емкостным датчиком, содержащий дифференциальный конденсатор, генератор синусоидального напряжения, линейный инвертор, два сумматора, предварительный усилитель, измерительный усилитель и синхронный (фазочувствительный) детектор, причем выход генератора синусоидального напряжения соединен с входом опорного сигнала синхронного детектора, с первым входом первого сумматора и с входом линейного инвертора, выход которого соединен с первым входом второго сумматора, выходы сумматоров соединены с соответствующими крайними обкладками дифференциального конденсатора, средняя обкладка которого соединена с входом предварительного усилителя, выход которого соединен с вторыми входами сумматоров и с входом синхронного детектора, выход которого соединен с выходом преобразователя . Известное устройство, в отличие от вышеупомянутого, имеет линейную функцию преобразования. Однако недостатком известного устройства также является невысокая точность преобразования неэлектрических величин в напряжение. В известном устройстве общей отрицательной обратной связью охвачены только предварительный усилитель и дифференциальный конденсатор, что исключает влияние на точность измерения нелинейности и нестабильности коэффициента передачи предварительного усилителя. Однако при этом измерительный усилитель и синхронный детектор находятся вне контура отрицательной обратной связи и образуют цепь прямого измерительного преобразования, вследствие чего нестабильности и нелинейности функций (коэффициентов) передачи измерительного усилителя и синхронного детектора снижают точность преобразования устройства. Это видно из выражения преобразования информативного параметра в выходное напряжение Uвых в известном устройстве:
Uвых= Kи.у.




где Kи.y. и Кс.д. - коэффициенты передачи соответственно измерительного усилителя и синхронного детектора;
U2 - амплитуда выходного напряжения генератора синусоидального напряжения;

Uвых= U1



U1 - выходное напряжение источника 1. Как видно из выражения (3) (за счет введения общей отрицательной обратной связи в устройство), на точность преобразования информативного параметра в предложенном устройстве влияет только нестaбильность постоянного напряжения источника 1, которое стабилизировать практически достаточно просто (например, в качестве источника постоянного стабильного напряжения может быть использованы последовательно соединенные резистор и стабилитрон, подключенные к источнику питания устройства). При этом, в отличие от прототипа, нестабильности и нелинейности функции преобразования усилителя и фазочувствительного детектора не обуславливают погрешность преобразования. Экономический эффект от использования предлагаемого технического решения обусловлен повышением точности преобразования измерительных преобразователей неэлектрических величин и в денежном выражении определится при конкретном его применении. Предлагаемое устройство предполагается применять для преобразования выходных сигналов емкостных датчиков угловых перемещений троса внешней подвески грузовых вертолетов. Информация о угловых перемещениях троса внешней подвески необходима пилоту для задания режимов полета вертолета при транспортировке грузов на внешней подвеске и проведении строительно-монтажных работ (подъем опор, установка фундаментов, раскатка проводов линий электропередачи и др. ). При этом повышение точности преобразования выходных сигналов емкостных датчиков в показания (т. е. повышение точности контроля угловых положений троса внешней подвески) позволит пилоту оптимизировать полеты вертолета и тем самым повысить эффективность строительно-монтажных работ вследствие сокращения времени монтажа и транспортирования, а также позволит повысить безопасность полетов на строительно-монтажных работах.
Класс G01R27/26 для измерения индуктивности и(или) емкости; для измерения добротности, например резонансным способом; для измерения коэффициента потерь; для измерения диэлектрических постоянных