огнеупорная набивная масса

Классы МПК:C04B35/18 с высоким содержанием оксида алюминия
Автор(ы):, , , , , ,
Патентообладатель(и):Восточный научно-исследовательский и проектный институт огнеупорной промышленности
Приоритеты:
подача заявки:
1991-06-13
публикация патента:

Использование: для футеровки сталеразливочных ковшей методом набивки. Сущность изобретения: масса включает, мас. % : борная кислота 2 - 3; оксид алюминия 10 - 15; силикат натрия 2 - 3; огнеупорная глина 4 - 8; шлак алюминотермического производства металлического хрома остальное. Характеристики: прочность при сжатии 44-47 H/мм2, открытая пористость 19 - 22% , линейные изменения 0,9 - 1,5% , шлако-устойчивость (разъединение) 1,5 - 1,8 мм, глубина спекания 12 - 17 мм, износ за плавку 3 - 6 мм. 2 табл.
Рисунок 1

Формула изобретения

ОГНЕУПОРНАЯ НАБИВНАЯ МАССА, включающая шлак алюминотермического производства металлического хрома, высокоглиноземистый компонент и борную кислоту, отличающаяся тем, что, с целью повышения шлакоустойчивости и прочности футеровки, она дополнительно содержит силикат натрия и огнеупорную глину, а в качестве высокоглиноземистого компонента - оксид алюминия при следующем соотношении компонентов, мас. % :

Оксид алюминия 2 - 3

Борная кислота 10 - 15

Силикат натрия 2 - 3

Огнеупорная глина 4 - 8

Шлак алюминотермического производства металлического хро

ма Остальное

Описание изобретения к патенту

Изобретение относится к составам огнеупорных спекаемых масс, применяемых для футеровки сталеразливочных ковшей методом набивки.

Известна огнеупорная масса для футеровки индукционных печей, включающая, мас. % : шлак алюминотермического производства металлического хрома 5-15; карборунд 5-15, октоборат натрия 0,5-2,6, алюмосиликатный материал 35-55; высококремнеземистый материал остальное [1] .

Недостатками известной массы являются низкие шлакоустойчивость и эрозионная устойчивость при использовании ее для футеровки сталеразливочных ковшей. Это обусловлено высоким содержанием оксида кремния и недостаточным количеством спекающей добавки (0,5-2,5% ).

Кроме того, данный состав не имеет достаточной прочности вследствие малой глубины спекания, особенно в интервале температур 300-500оС, необходимой для извлечения металлического шаблона.

Наиболее близкой к предлагаемой по технической сущности является огнеупорная масса для футеровки индукционных печей, применяемых для плавки сплавов на основе меди, включающая, мас. % : шлак алюминотермического производства металлического хрома основа: борная кислота 1-3; высокоглиноземистый шамот 40-60; синтезированный хромит магния 10-17 [2] .

Известная масса характеризуется повышенной прочностью и эрозионной устойчивостью при плавке сплавов на основе меди в индукционных печах.

Однако данную массу нельзя применять в футеровке сталеразливочных ковшей из-за малой шлакоустойчивости, обусловленной содержанием значительного количества высокоглиноземистого шамота, что понижает устойчивость шлакового пояса стальковшей к основным шлакам электросталеплавильного производства. Данная масса характеризуется низкой эрозионной устойчивостью вследствие малого содержания спекающей добавки, не обеспечивающей необходимую (50-70 мм) глубину спекания (прочность рабочего слоя футеровки).

Кроме того, данный состав не имеет достаточной прочности в интервале температур 300-500оС, необходимой для извлечения шаблона.

Целью изобретения является повышение шлакоустойчивости и прочности футеровки.

Это достигается тем, что огнеупорная набивная масса, включающая шлак алюминотермического производства металлического хрома, высокоглиноземистый компонент и борную кислоту, в качестве высокоглиноземистого компонента содержит оксид алюминия и силикат натрия и огнеупорную глину дополнительно при следующем соотношении компонентов, мас. % : Борная кислота 2-3 Оксид алюминия 10-15 Силикат натрия 2-3 Огнеупорная глина 4-8

Шлак алюминотерми-

ческого производства металлического хрома Остальное

П р и м е р. Огнеупорную набивную массу готовят следующим образом.

Шлак алюминотермического производства металлического хрома применяют преимущественно фракций 3-0 мм.

Борную кислоту и огнеупорную глину перед применением просеивают через сетку с ячейкой 0,5 мм.

В качестве оксида алюминия применяют тонкодисперсный корунд фракции менее 0,1 мм или муллитокорундовый мертель.

Силикат натрия применяют в молотом виде фракции менее 0,5 мм с содержанием зерен менее 0,1 мм более 60% .

Массу готовят в смесителе принудительного действия и применяют для изготовления футеровок сталеразливочных ковшей методом набивки. Футеровку ковша готовят путем засыпки массы в пространство между цельным стальным шаблоном и кожухом или арматурной кладкой и уплотняют, вибрируя шаблон с помощью электровиброустановки.

Шаблон извлекают после первого этапа спекания при 400-500оС. Спекание футеровки на втором этапе при 1200-1300оС проводят с помощью газогорелочного устройства. Окончательное спекание проводят с помощью расплавленного металла при 1580-1700оС.

Составы известной и предложенной огнеупорной набивных масс представлены в табл. 1, свойства образцов из этих масс представлены в табл. 2.

Класс C04B35/18 с высоким содержанием оксида алюминия

способ получения проппанта и проппант -  патент 2518618 (10.06.2014)
огнеупорная пластичная масса -  патент 2507179 (20.02.2014)
окислительный катализатор -  патент 2505355 (27.01.2014)
способ получения огнеупорной керамобетонной массы -  патент 2483045 (27.05.2013)
способ повышения эксплуатационных характеристик алюмосиликатного огнеупора -  патент 2474559 (10.02.2013)
шихта для изготовления огнеупорного безводного композиционного материала и изделий -  патент 2422403 (27.06.2011)
керамическая смесь для применения в производстве огнеупоров и соответствующий продукт -  патент 2386604 (20.04.2010)
способ получения огнеупорных изделий -  патент 2382013 (20.02.2010)
шихта для изготовления огнеупорных изделий -  патент 2359942 (27.06.2009)
огнеупорная масса для закрытия чугунных лёток доменных печей -  патент 2356870 (27.05.2009)
Наверх