способ легирования полупроводников
Классы МПК: | H01L21/268 с использованием электромагнитного излучения, например лазерного |
Автор(ы): | Рыков В.В., Кабешов А.В., Рыкова Т.С., Акашкин А.С. |
Патентообладатель(и): | Рыков Вениамин Васильевич |
Приоритеты: |
подача заявки:
1991-03-04 публикация патента:
28.02.1994 |
Использование: технология изготовления полупроводниковых приборов. Сущность: на поверхность полупроводниковой подложки наносят лигатуру. Полученную структуру помещают в магнитное поле и проводят облучение светом с плотностью мощности, не вызывающей плавление поверхности структуры. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
СПОСОБ ЛЕГИРОВАНИЯ ПОЛУПРОВОДНИКОВ, включающий нанесение на поверхность полупроводниковой подложки лигатуры и облучение полученной структуры светом, отличающийся тем, что, с целью повышения качества за счет снижения механических напряжений в легированном слое и снижения энергоемкости способа, до облучения структуры помещают в магнитное поле, а облучение проводят при плотности мощности светового излучения, не вызывающей нагрев поверхности структуры.Описание изобретения к патенту
Изобретение относится к технологии изготовления полупроводниковых приборов и может быть использовано для легирования полупроводников различными материалами. Известен способ легирования полупроводников, при котором легирующую примесь предварительно ионизируют и внедряют вглубь полупроводника, сообщая ей необходимую энергию в электрическом поле [1] . К недостаткам способа относится трудоемкость, сложность аппаратурного оснащения, необходимость последующего отжига для восстановления нарушенной структуры и перевода внедренной примеси в активное состояние. Способ не может быть применен для обработки пластин больших размеров из-за расфокусировки при отклонениях луча. Наиболее близким по технической сущности к предлагаемому изобретению является способ лазерного легирования, при котором на поверхность полупроводника наносят материал лигатуры и облучают полученную структуру светом от лазерного источника [2] . Недостатком данного способа является то, что легирование полупроводников осуществляют при больших интенсивностях света лазерного источника из-за необходимости локального нагрева поверхности полупроводника в области контакта с лигатурой. Необходимость предварительного подогрева полупроводниковых подложек до 500-600оС и специфические процессы протекания диффузии лигатуры приводят к появлению механических напряжений, которые в ряде случаев достаточны для образования трещин на всю глубину легированного слоя. Цель изобретения - повышение качества легирования за счет снижения механических напряжений, возникающих в легированном слое, и снижение энергетических затрат. Цель достигается тем, что в способе легирования полупроводника, при котором на поверхность полупроводника наносят материал лигатуры и облучают полученную структуру светом, при этом полученную структуру дополнительно помещают в магнитное поле и облучают светом с интенсивностью, не вызывающей нагрев поверхности структуры. Существенным отличием заявляемого технического решения является то, что легирование полупроводников осуществляется при таких энергетических режимах облучения, когда разогрева приповерхностного слоя полупроводника в области контакта с лигатурой не происходит. Тем самым величина механических напряжений, возникающих при легировании, значительно снижается, что улучшает качественные характеристики легированного слоя. Способ поясняется фиг. 1-4. Способ осуществляют следующим образом. На полупроводниковые подложки GeSe4 размерами 5х5х0,5 мм с одной стороны наносят полупрозрачные пленки никеля или алюминия толщиной 0,2 мкм. Далее исследуемые образцы помещают в магнитное поле с напряженностью 103 Э и облучают светом с интенсивностью 1-10 мВт. Используемые для проведения диффузии интенсивности света не могут вызвать какого-либо существенного повышения температуры, необходимого для проведения отжига или диффузии. В процессе легирования толщины слоя лигатура контролировалась по величине фотоакустического сигнала, формируемого тепловым расширением пленки диффузанта. На фиг. 1 изображен спектр фотоакустического сигнала до и после легирования на структуре GeSe4-Ni (кривые 1 и 2 соответственно). Из-за специфики измерения спектр фотоакустического отклика имел характерные изменения знака сигнала (смена фазы измеряемого сигнала относительно опорного), что обусловлено сменой области поглощения света и соответственно тепловым расширением либо поверхности полупроводника в области собственного поглощения света, либо тепловым расширением материала лигатуры (никеля, алюминия) в области прозрачности полупроводника. После одновременного воздействия магнитного поля напряженностью 103 Э и лазерного облучения (лазер ОКГ-12-1) с длиной волны 633 км 10 мВт, в течение 30 мин спектр фотоакустического отклика показывает значительное изменение толщины слоя лигатуры, так как амплитуда фотоакустического сигнала в области прозрачности полупроводника зависит от массы, а следовательно и толщины пленки никеля. Методом рентгеноэлектронной спектроскопии с применением ионного травления проведены исследования элементного состава и химического состояния приповерхностных слоев структуры GeSe4-Ni. Фотоэлектронные спектры возбуждали MgK


Класс H01L21/268 с использованием электромагнитного излучения, например лазерного