способ определения флюенса нейтронов
Классы МПК: | G01T3/08 с помощью полупроводниковых детекторов |
Автор(ы): | Кириллов А.И., Ходков А.Е. |
Патентообладатель(и): | Войсковая часть 51105 |
Приоритеты: |
подача заявки:
1991-04-19 публикация патента:
30.01.1994 |
Использование: изобретение относится к технике измерения нейтронного излучения и может быть использовано для определения флюенса нейтронов. Цель изобретения - повышение чувствительности и упрощение способа определения флюенса нейтронов. Сущность изобретения: способ основан на использовании лавинного режима работы биполярного транзистора и измерений напряжений пробоя при включении с общей базой при разомкнутом эмиттере и при включении с общим эмиттером при разомкнутой базе до облучения и при включении с общим эмиттером при разомкнутой базе после облучения и определении флюенса нейтронов F по формулам: F=A
(Uкэопр/Uкбопр)3
[Uкэпр-Uкэопр+Kт
(T-T0)] , при F меньше 10 нейтр/см F=B
[Uкэпр-Uкэопр+Kт
(T-T0)](1.9+Uкэопр/Uкбопр) при F больше 1012 нейтр/см2 , где A, B - постоянные коэффициенты, зависящие от материала и типа транзистора; Uкэопр , Uкэпр - напряжения пробоя при включении с общим эмиттером при разомкнутой базе до и после облучения; Uкбопр - напряжение пробоя при включении с общей базой при разомкнутом эмиттере до облучения; Kт - температурный коэффициент напряжения пробоя; T0 , T - температуры, при которых измерялись Uкэопр и Uкэпр 2 ил.
Рисунок 1, Рисунок 2





Формула изобретения
СПОСОБ ОПРЕДЕЛЕНИЯ ФЛЮЕНСА НЕЙТРОНОВ, основанный на измерении изменяющегося напряжения пробоя биполярного транзистора под воздействием облучения, отличающийся тем, что, с целью увеличения чувствительности и упрощения способа, у транзистора перед облучением измеряют величины пробивных напряжений при включении с общей базой при разомкнутом эмиттере и при включении с общим эмиттером при разомкнутой базе, после облучения измеряют изменившееся напряжение пробоя при включении с общим эмиттером при разомкнутой базе, а флюенс определяют по формуламF= A

при F меньше 1012 нейтр/см2,
F= B


при F больше 1012 нейтр/см2,
где A, B - постоянные коэффициенты, зависящие от материала и типа транзистора;
Uкбопр - напряжение пробоя транзистора, включенного по схеме с общей базой при разомкнутом эмиттере до облучения;
Uкэопр - напряжение пробоя транзистора, включенного по схеме с общим эмиттером при разомкнутой базе до облучения;
Uкэпр - напряжение пробоя транзистора, включенного по схеме с общим эмиттером при разомкнутой базе после воздействия флюенса нейтронов F;
Kт - температурный коэффициент напряжения пробоя;
T - температура, при которой измерялось Uкэпр;
Tо - температура, при которой измерялось Uкэопр.
Описание изобретения к патенту
Изобретение относится к технике измерения нейтронного излучения и может быть использовано для определения флюенса нейтронов. Известен способ измерения флюенса нейтронов по увеличению обратного тока диодов при фиксированном смещении [1] , однако чувствительность способа (более 1012 нейтр/см2) слишком мала для большинства случаев, а используемые детекторы требуют индивидуальной калибровки. Известен полупроводниковый детектор для измерения мощности дозы рентгеновского и гамма-излучения с одним p-n-переходом, работающим в режиме лавинного пробоя [2] . Режим лавинного пробоя используется для увеличения амплитуд импульсов от электронно-дырочных пар, возникающих под действием квантов излучения. Детектор работает в узком интервале мощности дозы - (0,01. . . 0,1) Р/с и требует сложной пересчетной аппаратуры. Наиболее близок к изобретению способ, основанный на изменении напряжения пробоя биполярных планарно-эпитаксиальных транзисторов под действием нейтронного излучения [3] . Недостатками способа являются подборка транзисторов по одинаковым напряжениям лавинного пробоя, требующая огромного числа транзисторов; большая предварительная работа по снятию градуировочных кривых; невозможность измерения флюенса нейтронов менее




Uкб опр - напряжение пробоя транзистора, включенного по схеме с общей базой, при разомкнутом эмиттере до облучения;
Uкэ опр - напряжение пробоя транзистора, включенного по схеме с общим эмиттером, при разомкнутой базе до облучения;
Uкэ пр - напряжение пробоя транзистора, включенного по схеме с общим эмиттером, при разомкнутой базе после воздействия флюенса F;
Кт - температурный коэффициент напряжения пробоя;
Т - температура, при которой измерялось Uкэ пр;
То - температура, при которой измерялось Uкэ опр. Отличительными признаками предлагаемого способа определения флюенса нейтронов являются измерение перед облучением двух величин напряжений пробоя Uкб опр и Uкэ опр; вычисление флюенса нейтронов по формулам (1), (2) для измеренных значений Uкб опр, Uкэ опр, Uкэ пр; коррекция флюенса в зависимости от температуры окружающей среды. Сущность технического решения заключается в следующем. Рассмотрим статические параметры транзистора при включении с общим эмиттером в лавинном режиме
Uкэопр= U

Io/I = 1/M =

Uкэопр=U

I - ток, текущий через транзистор при заданном режиме;

n - постоянный коэффициент, зависящий от материала и типа транзистора. Радиационные дефекты, образованные под действием нейтронного излучения, являются эффективными центрами захвата и рекомбинации носителей заряда, поэтому у полупроводников в наибольшей степени претерпевают изменение время жизни неосновных носителей заряда. Соответствующая зависимость имеет вид
1/






K



Uпр = В









Существенной особенностью является то, что удельное сопротивление сохраняет тенденцию к увеличению с ростом значений флюенса до 1017 - 1018 нейтр/см2. Таким образом, результирующее изменение Uкэ пр определяется произведением двух сомножителей, один из которых


Uкб опр(Т) = Uкб опр(Тo) [1 + Ст(Т - Тo)] , (9) где Uкб опр(Т) - напряжение пробоя коллектор-базового перехода при температуре Т;
Uкб опр(Тo) - напряжение пробоя коллектор-базового перехода при температуре То;
Ст - температурный коэффициент напряжения пробоя
Ст = 6,5

Ст = 1,2





A = 1,15


F= 1.15





Изложенные материалы показывают, что использование предлагаемого способа может найти широкое применение для обеспечения дозиметрического сопровождения радиационных исследований и испытаний на ядерно-физических установках. На фиг. 1 приведены экспериментально снятые зависимости F = f(Uкэ пр - Uкэ опр) при максимально достигнутом флюенсе нейтронов 1,1

Класс G01T3/08 с помощью полупроводниковых детекторов