топка и способ ее работы
Классы МПК: | F23C9/00 Устройства для сжигания, характеризующиеся приспособлениями для возвращения продуктов сгорания или топочных газов в камеру сгорания |
Автор(ы): | Галицкий Ю.Я. |
Патентообладатель(и): | Казанский филиал Московского энергетического института |
Приоритеты: |
подача заявки:
1991-06-04 публикация патента:
30.01.1994 |
Использование: в энергомашиностроении для повышения эффективности и надежности в работе котлоагрегатов. Сущность изобретения: в топке подачу газов рециркуляции осуществляют через сопла, погруженные в проточную часть газохода, при этом величина погружения сопел возрастает от угловых сопел к осевым. 2 с. п. ф-лы, 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3
Формула изобретения
1. Топка котла, содержащая камеру рециркуляции с размещенными на ее стенке угловыми и приосевыми соплами рециркуляции, отличающаяся тем, что, с целью повышения экологичности и эксплуатационной надежности при размещении сопл в горизонтальном газоходе котла, указанные сопла погружены в проточную часть газохода на различную величину, определяемую из соотношения

где h0 - оптимальная глубина внедрения струй (при односторонней подаче h0 = 0,6H, при двусторонней h0 = 0,3H);
T - температура газов рециркуляции;
i - порядковый номер сопла, начиная от оси топки;
H - высота топки. 2. Способ работы топки котла, содержащий размещенные в газоходе угловые и приосевые сопла рециркуляции, незаглубленные и погруженные в его проточную часть на различную величину, отличающийся тем, что, с целью повышения экономичности и эксплуатационной надежности, газы рециркуляции подают через сопла, погруженные в проточную часть газохода.
Описание изобретения к патенту
Изобретение относится к топочной технике и может быть использовано для повышения эффективности и надежности в работе котельного агрегата. Известен по авт. св. N 1325250, cпособ работы топки заключается в подаче газов рециркуляции через угловые и приосевые сопла, размещенные в ряд по ширине стенки топки, при этом температуру газов рециркуляции, подаваемых в условные сопла, поддерживают более высокой, чем в остальных соплах. Недостатками изобретения является наличие температурной развертки в радиальном направлении (по высоте топки-газохода) вследствие разной величины внедрения отдельных струй газов рециркуляции в поток продуктов сгорания по ширине топки. Целью изобретения является повышение экономичности и надежности в работе топки путем интенсификации массообменных процессов между продуктами сгорания и газами рециркуляции. Указанная цель достигается тем, что подачу газов рециркуляции осуществляется через сопла, погруженные в проточную часть газохода, при этом величина погружения сопел увеличивается от угловых сопел к приосевым. При равномерном расположении сопел в ряду величина погружения сопел в проточную часть газохода определяется из соотношения














При этом качество массообменных процессов по высоте топки (газохода) является неизменным для отдельных локальных зон, чем достигается минимальная тепловая развертка, а следовательно, повышается экономичность и надежность топки. На фиг. 1 дана принципиальная схема устройства (топочной камеры), реализующего предлагаемый способ; на фиг. 2 - поперечное сечение камеры в сечении ввода рециркулирующих газов; на фиг. 3 - то же, поперечное сечение. П р и м е р. Топочная камера содержит камеру рециркуляции, в нижней части которой расположены горелки 2. В пределах горизонтального газохода 3 расположены сопла 4 рециркулирующих газов. Сопла 4 сообщаются с двумя магистралями 5 и 6. Причем участка магистралей 5 и 6, подсоединенные к каждому соплу 4, снабжены дроссельными задвижками 7 и 8. Сопла 4 рециркулирующих газов погружены в проточную часть газохода 3, причем величина погружения сопел 4 равная (в зависимости от расположения сопел 4 по ширине газохода 3). Наибольшую глубину погружения имеют центральные сопла 4, а наименьшую - угловые сопла 4. Причем взаимосвязь между глубинами погружения отдельных сопел определяется по соотношению


h - глубина погружения сопел;
i - порядковый номер сопла при отсчете от оси топки;
Т - температура газов рециркуляции. Магистрали 5 и 6 сообщаются с конвективной шахтой 9 на разных уровнях по высоте. На магистралях 5 и 6 установлены дымососы 10 и 11 рециркуляции. В камеру 1 через горелки подается топливовоздушная смесь. В пределах камеры 1 топливо сгорает, а продукты сгорания из камеры 1 поступают в горизонтальный газоход 3. Вследствие отдачи тепла от продуктов сгорания экранированным поверхностям камеры 1 распределение температур в потоке продуктов сгорания в пределах горизонтального газохода 3 имеет неравномерный характер по ширине. В общем случае, как известно, температура по ширине газохода меняется по параболическому закону Т= 1-kz-2, а величина тепловой развертки может достигнуть 100 и более градусов. В поток продуктов сгорания в пределах горизонтального газохода подаются газы рециркуляции с целью снижения величины тепловой развертки. При этом газы рециркуляции отбираются дымососами 10 и 11 из разноосных по высоте конвективной шахты 9 точек и по магистралям 5 и 6 поступают к соплам 4. При этом в зависимости от положения сопел 4 по ширине газохода 3 определяется соотношение расходов газов по магистралям 5 и 6 и температура газов рециркуляции Тi. Струи газов рециркуляции истекают через сопла 4, погруженнные в проточную часть газохода 3. При этом величина погружения сопел 4 разная: для приосевых сопел 4 глубина погружения максимальна, а для угловых сопел 4 минимальна. Этим обеспечивается оптимальное распределение струй рециркуляции по всей ширине газохода 3, что обеспечивает реализацию минимальной тепловой развертки в точке. Модельные экспериментальные исследования проведены на установке в лаборатории газовой динамики и горения КФМЭИ, расположенной на территории Казанской ИЭЦ-2, в широком диапазоне изменения режимных и конструктивных параметров:


















Класс F23C9/00 Устройства для сжигания, характеризующиеся приспособлениями для возвращения продуктов сгорания или топочных газов в камеру сгорания