способ получения синтетического цеолита
Классы МПК: | |
Автор(ы): | Джузеппе Белусси[IT], Марио Габриэле Клеричи[IT], Анджела Карати[IT], Антонио Эспозито[IT] |
Патентообладатель(и): | Эниричерке С.п.А. (IT), Эникем Синтезис С.п.А. (IT), Снампрогетти С.п.А. (IT) |
Приоритеты: |
подача заявки:
1987-10-21 публикация патента:
15.01.1994 |
Использование: в качестве катализатора. Сущность изобретения: смешивают тетраэтилсиликат, тетраэтилтитанат, органическое азотсодержащее основание, нитрат галлия, соль и/или гидроксид щелочного и/или щелочно-земельного металла при следующих соотношениях реагентов в пересчете на оксиды: SiO2/Ga2O3 130-600; SiO2/TiO2 20 - 50; H2O/SiO2 20 - 100; M/SiO2 0,01 - 0,1; C12H21N+/SiO2 0,2 - 0,4, где M - катион щелочного или щелочно-земельного металла. Гидротермальную кристаллизацию проводят при 120 - 200С в течение 1 - 120 ч. 6 ил. , 1 табл.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7
Формула изобретения
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКОГО ЦЕОЛИТА, включающий смешение источников кремния, титана, органического азотсодержащего основания и воды, гидротермальную кристаллизацию смеси, отделение осадка, его промывку, сушку, прокалку, отличающийся тем, что, с целью придания продукту свойства катализатора реакций олигомеризации олефинов, в качестве источника кремния берут тетраэтилсиликат, в качестве источника титана берут тетраэтилтитанат, на смешение дополнительно подают нитрат галия, соль и/или гидроксид щелочного и/или щелочно-земельного металла, смешение производят при следующих молярных отношениях реагентов в пересчете на оксиды:SiO2/Ga2O3 130 - 600
SiO2/TiO2 20 - 50
H2O/SiO2 20 - 100
S12H21N+/SiO2 0,2 - 0,4
M/SiO2 0,01 - 0,1
где М - катион щелочного или щелочно-земельного металла,
и гидротермальную кристаллизацию проводят при 120 - 200oС в течение 1 - 120 ч.
Описание изобретения к патенту
Изобретение относится к синтетическому материалу, содержащему окиси кремния, титана и галлия, имеющему пористую кристаллическую структуру цеолитного типа, а также к процессу получения указанного материала. Другие синтетические материалы, структурно соответствующие цеолиту ZSM-5, также известны. Был обнаружен новый синтетический цеолит, который назвали титан-галлий-силикалит, структурно подобный силикалиту, который может использоваться либо в качестве молекулярного сита, либо в качестве ионообменного материала, либо в качестве катализатора в следующих реакциях: крекинг, селектоформиннг, гидрогенизация и дегидрогенизация, олигомеризация, алкилирование, изомеризация, удаление воды из кислородсодержащих органических соединений, селективное окисление и гидроксилирование органических подложек с помощью Н2О2 (например окисление олефинов, диолефинов, спиртов, гидроксилирование ароматиков и т. д. ). Синтетический кристаллический пористый материал цеолитной природы в соответствии с предлагаемым способом, содержащий окиси кремния, титана и галлия, удовлетворяет в отожженном и безводном состоянии следующей эмпирической формулы:ZpHGaO2


g имеет величину, большую, чем нуль, и меньшую или равную 0,025;
а Н+ в НCaO2 должен быть по крайней мере частично или полностью заменен катионами. Переход от катионной формы к другой катионной форме может быть осуществлен с помощью обычных процессов обмена, известных из предшествовавших работ. Синтетический материал в соответствии с предлагаемым способом оказывается кристаллическим, если его исследовать рентгеновским методом. Такое исследование осуществляется с помощью порошкового дифрактометра, снабженного системой электронного подсчета импульсов и использующего CuK-альфа радиацию. Для вычисления величин интенсивностей измеряются высоты пиков и представляются в виде процента к наиболее интенсивному пику. Основные отражения для отожженного безводного продукта отличаются следующими величинами d, где d представляет собой межплоскостное расстояние:
d/A/ Относительная
интенсивность
11,14

9,99

9,74

6,36

5,99

4,26

3,86

3,82

3,75

3,72

3,65

3,05

2,99

(см-1) Относительная
интенсивность
1220-1230 W
1080-1110 S
965-975 mW
795-805 mW
550-560 m
450-470 mS где S - сильная; mS - среднесильная; m - средняя; mW - среднеслабая; W - слабая). На фиг. 1 представлен ИК-спектр: по абсциссе отложено волновое число (см-1), а по ординате приводится коэффициент пропускания (проценты). Такой ИК-спектр в основном подобен спектру известного цеолита, и существенно отличается от спектра ZSM-5 (или от подобных структур), изображенного на фиг. 2. Можно видеть, что в спектре отсутствует полоса при 965-975 см-1, которая характерна для известного титан-силикалита и для титан-галлий-силикалита. Следовательно предлагаемый материал, отличается от известного цеолита по своей эмпирической формуле. Использование предлагаемого материала в качестве катализатора в перечисленных реакциях является дальнейшим подтверждением отличия предлагаемого продукта от известных. В то время как известный цеолит является неактивным в первых реакциях и активным в последних реакциях, по сравнению с этим описываемый здесь цеолит активен во всех из описанных реакций. В соответствии с другим аспектом практического воплощения данного изобретения титан-галлий-силикалит может находиться в связанной форме с безводной олигомерной окисью кремния, причем молярное отношение безводной олигомерной окиси кремния к титан-галлий-силикату находится в диапазоне от примерно 0,05- до 0,2, причем титан-галлий-силикалит связан мостиками Si-O-Si, основная масса кристаллов титан-галлий-силикалита с окисью кремния имеет форму микросфер, имеющих диаметр в диапазоне от примерно 5 до 1000 мкм. Процесс изготовления катализатора со связывающим веществом основан на использовании водного раствора окиси кремния и гидроокиси тетраалкиламмония, полученной гидролизом тетраалкилсиликата, преимущественно тетраэтилортосиликата в водном растворе гидроокиси тетраалкиламмония. Алкиловые радикалы в тетраалкиламмонии содержат ряд атомов С, содержащихся в диапазоне от примерно 1 до 5. Гидролиз осуществляется в жидкой фазе при температуре, находящейся в диапазоне от нормальной (комнатной) температуры до 200оС и преимущественно с продолжительностью 0,2-10 ч. В таком растворе окись кремния находится в олигомерной форме и при достаточно высоких значениях рН, например при рН 10. Когда кристаллический титан-галлий-силикалит в виде очень мелких кристаллов распределяется в этом растворе поверхность кристаллов частично подвергается воздействию щелочности среды: такое положение благоприятствует образованию стабильных химических связей между поверхностью кристаллов и олигомерными силикатами в растворе. С помощью быстрого осушения этой суспензии, например распыляющей сушкой, вода из нее удаляется и в то же время происходит поперечная сшивка олигомеров, приводящая к образованию микросфер, обладающих трехмерной решеткой, в которой цеолитные кристаллы жестко связаны мостиками. Перед использованием микросферы отжигаются, во-первых, в инертной атмосфере (водород, азот и т. д. ), затем они подвергаются окислению при температурах, находящихся в диапазоне от примерно 150 до 700оС, преимущественно от примерно 500 до 600оС. Оптимальная концентрация общего количества твердых (SiO2, титан-галлий-силикалит, ТАА-ОН) в суспензии, подвергаемой распылению, составляет от примерно 10 до 40% по массе. Посредством изменения концентрации твердых в суспензии или посредством изменения размеров распылителя можно изменять средний диаметр получаемых частиц. Таким образом диаметр микросфер катализатора может изменяться в диапазоне от примерно 5 до 1000 мкм, причем для любого конкретного применения может быть выбран наиболее предпочтительный размер. П р и м е р 1. 6,1 г Ga(NO3)3


Селективность к димерам: 95%
Селективность к тримерам: 5%
П р и м е р 10. В остальной автоклав объемом 1 л, снабженный механической мешалкой и системой регулирования температуры, загружалось 373 г метанола, 4 г катализатора (в соответствии с примером 8), 5,0 г бензола (в качестве внутреннего стандарта для газохроматографического анализа) и 45 г 1-бутана. После установления температуры на контролируемом значении 22оС к суспензии добавлялось при интенсивном перемешивании 20 мл перекиси водорода при 33% (соотношение массы и объема). Реакция контролировалась посредством отбора образцов для их анализа и фильтрования их. Перекись водорода измерялась методом иодометрического титрования, а продукты реакции анализировались методом газожидкостной хроматографии в 1,8-метровой колонке с набивкой Poropak РS. Через 45 мин ситуация была следующей:
преобразование Н2О2 85%
1,2-эпоксибутен 0,0326 моль
1-метокси-2-гидроксибутан 0,0795 моль
2-метокси-1-гидроксибутан 0,0517 моль. П р и м е р 11. В автоклав емкостью 1 л, снабженный механической мешалкой, системой регулирования температуры и системой постоянного регулирования давления загружалось 193 г метанола, 4,0 г катализатора в соответствии с примером 4. В сосуд, связанный с автоклавом, загружалось 11,2 г перекиси водорода при 32% (соотношение массы и объема). После установления температуры на контролируемом значении 22оС и создании давления пропиленом к суспензии внутри автоклава добавлялась вся перекись водорода при перемешивании при давлении 300 кПа (причем это давление поддерживалось постоянным во все время реакции). Реакция контролировалась посредством отбора образцов суспензии, которые отфильтровывались и анализировались. Перекись водорода анализировалась методом иодометрического титрования, а продукты реакции анализировались методом газовой хроматографии в 1,8-метровой колонке с набивкой Poropаk PS. Через 45 мин ситуация была следующей:
преобразование Н2О2 88%
окись пропилена 6,02 х 10-3 моль
1-метокси-2-гидроксипропан 52,0 х10-3 моль
2-метокси-1-гидроксипропан 34,6х10-3 моль. П р и м е р 12. В маленькую стеклянную колбу емкостью 250 см3 загружались вещества в следующей последовательности: фенол 99,8 г; вода 24,2 г, ацетон 18,5 г, катализатор, полученный как в примере 5 5 г. Реакционная смесь нагревалась до 100оС при перемешивании и орошении, затем в тех же самых условиях в течение 45 мин по каплям добавлялось 15,4 г Н2О2 при 60% (соотношение массы и объема). Через 60 мин после начала добавления вся добавленная перекись водорода преобразовалась и полученные продукты реакции анализировались способом газовой хроматографии. Был получен следующий выход дифенолов:
Полученный дифенол (моль) Выход х x100 = 74,7%
загруженный Н2О2 (моль)
Оставшееся количество Н2О2 преобразовывалось в смолы и кислород. В полученных дифенолах отношение орто= /пара= = составляло 1,26. В таблице даны сведения по примерам. (56) Патент ВЕ N 886812, кл. С 01 В, 1981.