синий флип-чип светодиода на нитридных гетероструктурах

Классы МПК:H01L33/32 содержащие азот
B82B1/00 Наноструктуры
B82Y40/00 Изготовление или обработка нано-структур
Автор(ы):, , , ,
Патентообладатель(и):федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет МИФИ" (НИЯУ МИФИ) (RU)
Приоритеты:
подача заявки:
2013-10-18
публикация патента:

Изобретение относится к полупроводниковым нитридным наногетероструктурам и может быть использовано для изготовления светодиодов видимого диапазона с длиной волны 460±5 нм. Указанный синий флип-чип светодиод на нитридных гетероструктурах содержит металлические электроды p-типа, нитридный слой p-типа, III-нитридную активную область, III-нитридный слой n-типа, подложку из карбида кремния с текстурированной полуполярной или неполярной поверхностью, выполненной в виде нанообразований, размеры которых и расстояние между которыми сравнимы с длиной волны излучения. 5 з.п. ф-лы, 1 ил.

синий флип-чип светодиода на нитридных гетероструктурах, патент № 2541394

Формула изобретения

1. Синий флип-чип светодиод на нитридных гетероструктурах, включающий металлические электроды n- и p - типа, нитридный слой p-типа, III-нитридную активную область, III-нитридный слой n-типа, подложку из карбида кремния с текстурированной полуполярной или неполярной поверхностью, отличающийся тем, что текстурированная полуполярная или неполярная поверхность подложки выполнена в виде нанообразований, размеры которых и расстояние между которыми сравнимы с длиной волны излучения.

2. Синий флип-чип светодиод по п.1, отличающийся тем, что нанообразования выполнены в виде выступающих наноцилиндров над текстурированной поверхностью или выполненных в виде углублений.

3. Синий флип-чип светодиод по п.1, отличающийся тем, что нанообразования выполнены в виде выступающих наноконусов над текстурированной поверхностью или выполненных в виде углублений.

4. Синий флип-чип светодиод по п.1, отличающийся тем, что нанообразования выполнены в виде выступающих нанопирамид над текстурированной поверхностью или выполненных в виде углублений.

5. Синий флип-чип светодиод по п.1, отличающийся тем, что нанообразования выполнены в виде выступающих нанолинз над текстурированной поверхностью или выполненных в виде углублений.

6. Синий флип-чип светодиод по п.1, отличающийся тем, что нанообразования выполнены в виде нанопузырьков, расположенных под поверхностью подложки.

Описание изобретения к патенту

Изобретение относится к полупроводниковым нитридным наногетероструктурам и может быть использовано для изготовления светодиодов видимого диапазона с длиной волны 460±5 нм.

Данное изобретение описывает структуру синего флип-чипа со структурированной поверхностью для увеличения вывода излучения. Структурирование осуществляется путем фотолитографии с применением сухого плазмохимического травления. Результатом увеличения вывода излучения из синего флип-чипа является увеличение его общей эффективности (КПД).

Известен ряд разработок в этой области, среди которых следует отметить техническое решение, описанное в патенте США № 7915622 /I/. Целью данного изобретения было создание высокоэффективной текстурированной структуры светоизлучающего диода (СИД) с коэффициентом заполнения больше единицы для достижения высокого светового выхода на полупроводниках 3-5 и 2-6 групп. Структура СИД с высоким коэффициентом заполнения включает в себя: первый текстурированный слой и контактный слой, состоящий из легированных III-V или II-VI соединений полупроводников или сплава таких полупроводников, полученных осаждением методом ELOG (epitaxial lateral overgrowth) на подложке, текстурированной множеством областей, которые инициировали быстрый рост упомянутого первого текстурированного слоя и контактного слоя; текстурированный нелегированный или легированный активный слой, состоящий из III-V или II-VI соединений полупроводников или сплава таких полупроводников, в котором происходит или излучательная рекомбинация электронов и дырок, или межзонные переходы; второй текстурированный слой и контактный слой, состоящий из легированных III-V или II-VI соединений полупроводников или сплава таких полупроводников. Структура может включать проводящую или изолирующую подложку, III-V или II-VI соединений полупроводников или сплава таких полупроводников, выращенных на подложке с помощью какого-либо вида эпитаксии (например, МЛЭ, MOCVD), рисунок на подложке, созданный с помощью масочного или безмасочного метода (фотолитография, прямое вырезание рисунка электронным или ионным лучом, СТМ, голография, наноимпринт, анодирование пористого оксида алюминия, влажное травление или другой подходящий метод). Каждый текстурированный и контактный слой, текстурированный дырочный слой, контактный слой p-типа, текстурированный n-слой могут быть в форме единого слоя, совокупности слоев или сверхрешеток. Текстурированный активный слой может быть легированной или нелегированной гетероструктурой, единичной квантовой ямы или совокупности квантовых ям. Проводящая подложка может состоять из GaN, AlN, SiC, Si, GaAs, InP, ZnSe или иных металлоксидных материалов. Изолирующая подложка может состоять из сапфира, AlN, GaN, ZnO или иных металлоксидных материалов. Изобретение дает возможность получить СИД с трехмерным выпуклым или бороздчатым узором. Узор в виде треугольных, шестиугольных, выпуклых, вогнутых или трапециевидных объектов увеличивает коэффициент заполнения СИД структуры до значения, превышающего единицу, как результат увеличение активной области светоизлучения.

В то же самое время текстурированная поверхность уменьшает внутреннее отражение устройства и снижает глубину абсорбции полупроводников или их сплавов, вследствие чего вывод света может быть значительно увеличен. Однако следует отметить, что все упомянутые выше типы текстурирования приводят к переотражению излучения, что, хотя и увеличивает вывод излучения, но приводит к его поляризации, что отрицательно сказывается на эффекте излучательной рекомбинации и снижает внутреннюю квантовую эффективность. Поэтому следует стремиться к созданию текстурированных поверхностей, разрушающих поляризацию, каковыми являются диффузно рассеивающие поверхности.

Известно также нитридное светоизлучающее устройство по патенту США № 7714340 /2/. Изобретение представляет собой СИД на основе полупроводниковых нитридов, который излучает вниз (bottom-emitting), с повышенным выводом света. Повышенный вывод света обеспечивается за счет отражателя, который перенаправляет вниз свет, излученный вверх, в зону выхода света. Сетчатая контактная область позволяет распределить ток через всю область инжекции носителей, не занимая всю верхнюю поверхность устройства.

Известно также техническое решение, позволяющее повысить вывод излучения из чипа /3/. Исследователи сообщают, что некоторое улучшение вывода света дает утонение внешней поверхности чипа. Снижение рассеяния света, по мнению исследователей, может быть достигнуто за счет воздушных карманов, полученных методом PLOG слоя AlN. Существенное увеличение вывода света может быть достигнуто также за счет устранения механизмов рассеяния света при совокупном эффекте сруктурирования задней поверхности и сбора направляемого излучения за счет эффекта волновода «waveguided». Направляемым излучением «waveguided light» называют световое излучение, распространяющееся вдоль плоскостей слоев (световой волновод) и выходящее через край чипа, а не в нужном направлении.

Наиболее близким к заявленному изобретению является устройство по патенту США № 8114698 /4/. Суть данного изобретения сводится к следующему. Заявлена конструкция и способ изготовления светодиода на базе нитридов III группы, в которой, по крайней мере, одна поверхность полуполярной или неполярной плоскости слоя III нитридного полупроводника является структурированной (текстурированной) с тем, чтобы увеличить вывод излучения. Текстурирование может быть выполнено с помощью плазмохимического травления, последующей фотолитографии или нанопечати. Недостатки прототипа заключаются в том, что структурированная поверхность не позволяет полностью собрать световой поток, который распространяется вдоль плоскостей слоев (световых волноводов), а также в том, что световое излучение выводится за счет эффектов отражения от структурированных поверхностей. Отраженное излучения всегда становится поляризованным, что весьма нежелательно при прохождении излучения через активную область, поскольку поляризованное излучение негативно влияет на эффекты рекомбинации носителей внутри активной области.

Существует ряд возможностей для повышения вывода излучения. Для светодиодного чипа на базе нитридов из-за большой разницы между коэффициентами преломления GaN (n=2.5) и воздуха (n=1), пространственный угол (при вершине конуса) расхождения светового излучения составляет всего 23 градуса, что приводит к низкой эффективности вывода светового излучения, составляющей 4,18% /5/. Излучение за пределами конуса претерпевает многократные отражения и, в конечном счете, поглощается активной областью или электродами. Для уменьшения внутренних потерь света и способствования выводу света может быть использована технология текстурирования поверхности. Хотя текстурирование поверхности с помощью травления является непременным условием увеличения вывода излучения из нитридных структур световодов, все же его результат зависит от ориентации кристаллов и полярности поверхности, подвергаемой текстурированию, особенно N-поверхности c-полярного [0001] GaN /5/. Поэтому данная методика травления не применима для кристаллов GaN другой ориентации и полярности, включая a-поверхность (11-20), неполярную m-поверхность (1-100) и большинство неполярных поверхностей.

Задачей заявляемого изобретения является увеличение внешнего квантового выхода устройства за счет создания текстурированной поверхности с увеличенным выводом излучения такого типа, чтобы она позволяла выводить больший световой поток, не внося при этом нежелательную поляризацию, значительно уменьшить внутреннее отражение, улучшить эффективность рекомбинации носителей.

Технический результат, достигаемый при реализации заявленного изобретения, заключается в получении синего флип-чип светодиода на нитридных гетероструктурах с увеличенным коэффициентом вывода излучения.

Указанный технический результат достигается путем создания флип-чипа, содержащего металлические электроды n и p-типа, нитридный слой p-типа, III-нитридную активную область, III-нитридный слой n-типа, подложку из карбида кремния с текстурированной полуполярной или неполярной поверхностью, выполненной в виде щетки нанообразований, которые являются практически идеальным диффузором, не вносящим поляризацию в рассеиваемое излучение. Данные нанообразования могут быть выполнены в виде наноцилиндров, нанолинз, наноконусов или нанопирамид, выступающих над текстурированной поверхностью или выполненных в виде углублений, размеры которых и расстояние между которыми сравнимы с длиной волны излучения. Нанообразования могут также находиться на некотором углублении от поверхности (в объеме) и представлять собой микропузырьки, расположенные хаотично, размеры которых и расстояние между которыми сравнимы с длиной волны излучения. Текстурирование поверхности увеличивает коэффициент вывода излучения синего флип-чип светодиода на 50-55% по сравнению с аналогичным светодиодом без текстурированной поверхности.

Флип-чип выполнен на основе нитридных гетероструктур, представленный на Фиг.1, где:

1, 2 - металлические электроды,

3 - нитридный слой p-типа,

4 - нитридный слой n-типа,

5 - III-нитридная активная область,

6 - текстурированная полуполярная или неполярная поверхность,

7 - подложка из карбида кремния.

Структура кристалла содержит: металлический электрод n-типа 1, металлический электрод p-типа 2, нитридный слой p-типа 3, III-нитридную активную область 5, содержащую квантовые ямы InGaN, барьеры GaN или AlGaN, нитридный слой n-типа 4, подложку из карбида кремния 7 с текстурированной полуполярной или неполярной плоскостью 6. При этом текстурированная поверхность выполнена в виде нанообразований, выполненных в виде наноцилиндров, нанолинз, наноконусов или нанопирамид, выступающих над текстурированной поверхностью или выполненных в виде углублений. Нанообразования могут также находиться на некотором углублении от поверхности (в объеме) и представлять собой микропузырьки, расположенные хаотично, размеры которых и расстояние между которыми сравнимы с длиной волны, щетки наноцилиндров или наноконусов или нанопирамид. Излучение выходит через подложку из карбида кремния 7.

Наиболее значимое преимущество данного изобретения состоит в том, что оно значительно увеличивает вывод излучения, что для устройств данного типа является наиболее узким местом. Кроме того, данное изобретение позволяет более простым способом увеличивать вывод излучения по сравнению с использованием фотонного кристалла. Текстурированная поверхность имеет микронеровности конечной высоты. Микрорельеф приводит к нерегулярному рассеянию света по разным направлениям. Если высота микронеровностей hсиний флип-чип светодиода на нитридных гетероструктурах, патент № 2541394 0.2синий флип-чип светодиода на нитридных гетероструктурах, патент № 2541394 то отражение диффузное, что справедливо в нашем случае, при hсиний флип-чип светодиода на нитридных гетероструктурах, патент № 2541394 0.003синий флип-чип светодиода на нитридных гетероструктурах, патент № 2541394 отражение зеркальное. Диффузное отражение света представляет собой рассеивание света во всевозможных направлениях шероховатой поверхностью, представляющей собой совокупность различным образом ориентированных площадок с размерами синий флип-чип светодиода на нитридных гетероструктурах, патент № 2541394 синий флип-чип светодиода на нитридных гетероструктурах, патент № 2541394 , сводится к отражению света этими площадками в соответствии с формулами Френеля; угловое распределение яркости и поляризации диффузно отраженного света целиком определяется характером стохастического распределения площадок по ориентациям.

Особый случай рассеяния света макроскопическими неоднородностями представляет рассеяние шероховатыми поверхностями. При многократном рассеянии света на текстурированной шероховатой поверхности, представляющей собой нанообразования в виде наноцилиндров, нанолинз, наноконусов или нанопирамид, выступающих над текстурированной поверхностью или выполненных в виде углублений, размеры которых и расстояние между которыми сравнимы с длиной волны излучения. Нанообразования могут также находиться на некотором углублении от поверхности (в объеме) и представлять собой микропузырьки, расположенные хаотично, диффузная составляющая становится почти изотропной, а зеркальная - исчезает. В этом случае поверхность выглядит матовой.

Принцип действия светодиода основан на использовании явления излучательной рекомбинации. Через p-n-переход протекает прямой ток между электродами 1 и 2, при этом происходит рекомбинация носителей, то есть заполнение свободного энергетического уровня в валентной зоне электроном, находящимся в зоне проводимости, что сопровождается выделением энергии. Эта энергия выделяется в виде квантов лучистой энергии. Обычно это наблюдается в полупроводниках, представляющих собой двойные и тройные соединения. По существу светодиод - это диод полупроводникового типа-p-n-переход, и является соединением двух частей полупроводника с разными типами проводимости. Один из них обладает избытком электронов (n-тип), а второй - избытком дырок (p-тип). Если к p-части такого диода присоединить плюс источника тока, то через него пойдет ток. В светодиоде наиболее важным является процесс, происходящий при прохождении тока. В этот момент осуществляется рекомбинация носителей электрического заряда. Отрицательно заряженные электроны занимают место в положительно заряженных ионах кристаллической решетки полупроводника. И когда электрон и дырка встречаются, происходит выделение энергии, излучается фотон, квант света. Если излучение не происходит, высвобожденная энергия переходит в тепловую, нагревая вещество. Величина энергии квантов, выделяемых при рекомбинации, зависит от разницы энергетических уровней электронов в возбужденном и нейтральных атомах, то есть от ширины запрещенной зоны. Кванты излучения распространяются во всех направлениях.

Конкретная реализация структуры УФ светодиода, представленная на Фиг.1, имеет следующие характеристики:

- Площадь поверхности кристалла, 0,2-0,5 мм2

- Длина волны излучения, 460±5 нм

- Прямое падение напряжения на токе 20 мА 3,3-4,0 B

- Дифференциальное сопротивление кристалла не более 6,0 Ом

- Токи утечки при обратном напряжении 3 В не более 10 мкА

Данное изобретение является универсальным, поскольку применимо к различным структурам чипов независимо от их кристаллических структур.

Источники информации

1. Патент США № 7915622.

2. Патент США № 7714340.

3. Lateral conduction, substrate-free deep UV nitride semiconductor LEDs Vol.6 · Issue 3 · April/May 2011 (Seongmo Hwang et al., Appl. Phys. Express, Vol.4, p032102, 2011.

4. Патент США № 8114698 - прототип.

5. Шуберт Ф. Светодиоды / Пер. с англл. Под ред. А.Э. Юновича. - 2-е изд. - М.: ФИЗМАТЛИТ, 2008, С.117.

Класс H01L33/32 содержащие азот

ультрафиолетовый светодиод на нитридных гетероструктурах -  патент 2528112 (10.09.2014)
iii-нитридный светоизлучающий прибор, включающий бор -  патент 2523747 (20.07.2014)
светоизлучающий прибор на основе нитрида элемента iii группы со светоизлучающим слоем с уменьшенными напряжениями (варианты) -  патент 2457581 (27.07.2012)
полупроводниковый светоизлучающий элемент -  патент 2456711 (20.07.2012)
фотолюминофор желто-оранжевого свечения и светодиод на его основе -  патент 2455335 (10.07.2012)
полупроводниковый элемент, излучающий свет в ультрафиолетовом диапазоне -  патент 2452061 (27.05.2012)
iii-нитридное светоизлучающее устройство со светоизлучающей областью с двойной гетероструктурой -  патент 2412505 (20.02.2011)
полупроводниковый прибор со встроенными контактами (варианты) и способ изготовления полупроводниковых приборов со встроенными контактами (варианты) -  патент 2394305 (10.07.2010)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)

Класс B82Y40/00 Изготовление или обработка нано-структур

светоизлучающий прибор и способ его изготовления -  патент 2528604 (20.09.2014)
способ получения модификатора для алюминиевых сплавов -  патент 2528598 (20.09.2014)
способ изготовления чувствительного элемента датчиков газов с углеродными нанотрубками -  патент 2528032 (10.09.2014)
способ получения наноразмерных оксидов металлов из металлоорганических прекурсоров -  патент 2526552 (27.08.2014)
способ получения наночастиц серебра -  патент 2526390 (20.08.2014)
газовый датчик -  патент 2526225 (20.08.2014)
способ получения нитевидных нанокристаллов полупроводников -  патент 2526066 (20.08.2014)
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
боридная нанопленка или нанонить и способ их получения (варианты) -  патент 2524735 (10.08.2014)
способ получения сверхтвердого композиционного материала -  патент 2523477 (20.07.2014)
Наверх