ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

способ определения лигнина

Классы МПК:D21C3/02 с применением неорганических оснований или щелочных соединений, например сульфатные процессы 
G01N33/46 древесины 
G01N21/27 с помощью фотоэлектрических средств обнаружения
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет имени М.В. Ломоносова" (САФУ) (RU)
Приоритеты:
подача заявки:
2013-06-27
публикация патента:

Изобретение относится к способам определения содержания лигнина Класона. Способ определения лигнина заключается в том, что к лигноцеллюлозному материалу добавляют водно-диоксановый раствор, полученный смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 2 М раствор гидроксида натрия, объем реакционной смеси доводят дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате. Изобретение заключается в упрощении и ускорении выполнения анализа. 2 табл., 24 пр.

Изобретение относится к процессам контроля химической переработки растительного сырья, а именно к способам определения лигнина Класона. Задача количественного определения лигнина имеет важное практическое значение как для технологии переработки лигноцеллюлозных материалов, так и для исследования их компонентов, для оценки количества лигнинных веществ в сточных водах, контроля технологических процессов [Хабаров Ю.Г., Песьякова Л.А. Аналитическая химия лигнина: монография. - Архангельск: Изд-во АГТУ, 2008. - 172 с.].

Для определения содержания лигнина в целлюлозных полуфабрикатах предложено большое число различных прямых и косвенных методов.

Известен метод определения лигнина с помощью азотной кислоты. Сущность метода заключается в обработке лигноцеллюлозного материала 14%-ной азотной кислотой при нагревании в течение 20 мин. В результате такой обработки лигнин нитруется и частично переходит в раствор. Нерастворившийся целлюлозный остаток отделяют фильтрованием и у фильтрата определяют оптическую плотность при 425 нм. По величине оптической плотности судят о содержании лигнина в лигноцеллюлозном материале [Henriksen A., Kesler R.B. The Nu-number, a measure of lignin in pulp // Tappi J. - 1970. - Vol.53, N 6. - P.1131-1140]. Недостатком этого метода является сложность выполнения анализа. Кроме того, метод обладает недостаточной чувствительностью.

Известен метод Попова, по которому для определения лигнина проводят предварительный гидролиз углеводов лигноцеллюлозного материала 37%-ной хлороводородной кислотой с добавкой 40%-ного водного раствора ZnCl2 в течение 30 мин при 45°С. Окончательный гидролиз проводят путем кипячения с обратным холодильником в течение 1 ч после добавления заданного количества воды. Остаток лигнина фильтруют, сушат и взвешивают [Попов И.Д. Върху методиката за количествено определяне на лигнина // Изв. Ин-та Биол. Бълг. АН. - 1957. - Vol.7. - Р.149-154]. Недостатками этого метода являются сложность выполнения анализа, многостадийность и длительная гравиметрическая методика определения массы лигнина.

Известен автоклавный метод определения лигнина путем гидролитического растворения полисахаридов, которое проводится в автоклаве с помощью 1%-ного раствора хлороводородной кислоты при давлении 5способ определения лигнина, патент № 2535018 6 ат. Продолжительность гидролиза составляет 6способ определения лигнина, патент № 2535018 7 ч. После гидролиза осадок лигнина фильтруют, промывают и сушат до постоянной массы [Konig Rump // Ztschr. Unters. Nahr. - Genussmitt. - 1914. - Bd. 28. - P.188]. Недостатками этого метода являются сложность, многостадийность, большая продолжительность гидролиза, необходимость применения автоклава, а также длительная гравиметрическая методика определения массы лигнина.

Известен метод Кларка, в котором гидролиз углеводов до моносахаридов легко проходит под действием безводной фтороводородной кислоты, которая быстро диффундирует в лигноцеллюлозный материал, вызывает его сильное набухание и не приводит к гумификации. Кроме безводной кислоты может быть использован и 80%-ный раствор HF. Полный гидролиз углеводов хвойной древесины проводится при 18способ определения лигнина, патент № 2535018 20°С в течение 30 мин, а лиственной - при 30°С. [Clark I.T. Determination of lignin by hydrofluoric acid // Tappi J. - 1962. - Vol.45, N 4. - P.310-314]. Недостатком этого метода является невозможность применять стеклянную посуду.

Известен способ определения лигнина в целлюлозных полуфабрикатах, по которому целлюлозный полуфабрикат обрабатывают в течение 1 ч 72%-ной серной кислотой. Затем добавляют концентрированную азотную кислоту и после тщательного перемешивания раствор разбавляют водой до заданного объема и подщелачивают раствором гидроксида натрия, и измеряют оптическую плотность полученного раствора при 315 нм. По величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате. [Патент РФ 2405877, МПК D21C 3/04 (2006.01); G01N 33/46 (2006.01); G01N 9/36 (2006.01); C07G 1/00 (2006.01). Способ определения лигнина в целлюлозных полуфабрикатах. - 2010. - Бюл. № 34]. Недостатками указанного способа являются сложность выполнения - многостадийность, длительность выполнения. Кроме того, не всегда удается достичь полного растворения лигноцеллюлозного материала.

Наиболее близким к заявляемому является метод определения лигнина с помощью серной кислоты - метод Класона [прототип]. Сернокислотный метод определения лигнина во многих странах был выбран в качестве стандартного. Модификацией метода Класона, которая применяется в России, является метод Комарова [Оболенская А.В., Ельницкая З.П., Леонович А.А. Лабораторные работы по химии древесины и целлюлозы. - М.: Экология, 1991. - 320 с.].

1 г лигноцеллюлозного материала предварительно в течение 2,5 ч обрабатывается 15 мл концентрированной (72%-ной) серной кислоты при комнатной температуре. Затем добавляют воду до концентрации серной кислоты 3% и проводят окончательный гидролиз углеводов путем нагревания с обратным холодильником в течение 1способ определения лигнина, патент № 2535018 5 ч. Затем осадок лигнина отделяют от раствора фильтрованием, тщательно промывают от следов серной кислоты, высушивают до постоянной массы при 105°С и взвешивают. В фильтрате с помощью метода УФ-спектроскопии определяют кислоторастворимую часть лигнина.

Недостатками сернокислотного метода являются сложность выполнения анализа, длительные стадии выполнения анализа, двухступенчатый гидролиз и гравиметрическая процедура определения массы лигнина.

Задачей предлагаемого изобретения является сокращение продолжительности и упрощение выполнения анализа.

Это достигается тем, что лигноцеллюлозный материал обрабатывают при нагревании азотной кислотой в водно-диоксановой среде, в ходе которой лигнин переходит в раствор, после чего реакционную смесь подщелачивают, отделяют нерастворившуюся углеводную часть, а в растворе определяют количество лигнина с помощью спектрофотометрии.

Способ осуществляется следующим образом. К 100 мг лигноцеллюлозного материала (ЛЦМ) добавляют 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему). Реакционную смесь нагревают на кипящей водяной бане в течение 15 минут. Затем добавляют 10 мл 2 М раствора гидроксида натрия. Объем реакционной смеси доводят до 50 мл дистиллированной водой и фильтруют. У фильтрата измеряют его оптическую плотность при 440 нм. По величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате.

Пример 1. Реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 1 мл диоксанового раствора сульфатного промышленного лигнина (концентрацией 30 мг/мл), нагревали на кипящей водяной бане в течение 15 минут. Затем добавляли 10 мл 2 М раствора гидроксида натрия. Объем реакционной смеси доводили до 50 мл дистиллированной водой и измеряли оптическую плотность при 440 нм (толщина кюветы 1 см, в кювете сравнения - дистиллированная вода). Величина оптической плотности при 440 нм составляет 1,692.

Пример 2. Анализу в условиях примера 1 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,9 мл диоксанового раствора сульфатного промышленного лигнина и 0,1 мл диоксана. Величина оптической плотности при 440 нм составляет 1,623.

Пример 3. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,8 мл диоксанового раствора сульфатного промышленного лигнина и 0,2 мл диоксана. Величина оптической плотности при 440 нм составляет 1,529.

Пример 4. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,7 мл диоксанового раствора сульфатного промышленного лигнина и 0,3 мл диоксана. Величина оптической плотности при 440 нм составляет 1,404.

Пример 5. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,6 мл диоксанового раствора сульфатного промышленного лигнина и 0,4 мл диоксана. Величина оптической плотности при 440 нм составляет 1,208.

Пример 6. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,5 мл диоксанового раствора сульфатного промышленного лигнина и 0,5 мл диоксана. Величина оптической плотности при 440 нм составляет 1,117.

Пример 7. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,4 мл диоксанового раствора сульфатного промышленного лигнина и 0,6 мл диоксана. Величина оптической плотности при 440 нм составляет 0,916.

Пример 8. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,3 мл диоксанового раствора сульфатного промышленного лигнина и 0,7 мл диоксана. Величина оптической плотности при 440 нм составляет 0,769.

Пример 9. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,2 мл диоксанового раствора сульфатного промышленного лигнина и 0,8 мл диоксана. Величина оптической плотности при 440 нм составляет 0,573.

Пример 10. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 0,1 мл диоксанового раствора сульфатного промышленного лигнина и 0,9 мл диоксана. Величина оптической плотности при 440 нм составляет 0,248.

Пример 11. Анализу в условиях примера 2 подвергали реакционную смесь, приготовленную из 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), и 1 мл диоксана. Величина оптической плотности при 440 нм составляет 0,019.

Результаты опытов 1способ определения лигнина, патент № 2535018 11 сведены в таблице 1. На основе данных таблицы 1 по методу наименьших квадратов были вычислены коэффициенты градуировочной зависимости:

способ определения лигнина, патент № 2535018 (коэффициент парной корреляции 0,9911).

Таблица 1
Исходные данные для построения градуировочного графика
ПримерОбъем раствора сульфатного лигнина, млМасса сульфатного лигнина, мгОптическая плотность при 440 нм
11 301,692
20,9 271,623
30,824 1,529

40,7 211,404
50,618 1,208
6 0,5151,117
70,4 120,916
80,3 90,769
90,26 0,573
10 0,130,248
110 00,019

Пример 12. К 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 17,44%, добавляли 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему). Реакционную смесь нагревали на кипящей водяной бане в течение 15 минут.

Затем добавляли 10 мл 2 М раствора гидроксида натрия. Объем реакционной смеси доводили до 50 мл дистиллированной водой и фильтровали. У фильтрата измеряли оптическую плотность при 440 нм (толщина кюветы 1 см, в кювете сравнения - дистиллированная вода). Величина оптической плотности при 440 нм составляет 1,547, что с учетом градуировочной зависимости соответствует 16,59% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 4,90%.

Пример 13. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 10,79%. Величина оптической плотности при 440 нм составляет 1,129, что с учетом градуировочной зависимости соответствует 10,64% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 1,35%.

Пример 14. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 9,7%. Величина оптической плотности при 440 нм составляет 1,074, что с учетом градуировочной зависимости соответствует 9,93% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 2,40%.

Пример 15. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 7,21%. Величина оптической плотности при 440 нм составляет 0,843, что с учетом градуировочной зависимости соответствует 7,16% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,75%.

Пример 16. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 5,85%. Величина оптической плотности при 440 нм составляет 0,702, что с учетом градуировочной зависимости соответствует 5,64% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 3,53%.

Пример 17. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 5,60%. Величина оптической плотности при 440 нм составляет 0,694, что с учетом градуировочной зависимости соответствует 5,56% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,64%.

Пример 18. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 4,90%. Величина оптической плотности при 440 нм составляет 0,549, что с учетом градуировочной зависимости соответствует 4,20% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 14,30%.

Пример 19. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 4,76%. Величина оптической плотности при 440 нм составляет 0,561, что с учетом градуировочной зависимости соответствует 4,30% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 9,69%.

Пример 20. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 4,25%. Величина оптической плотности при 440 нм составляет 0,468, что с учетом градуировочной зависимости соответствует 3,51% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 17,47%.

Пример 21. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 3,45%. Величина оптической плотности при 440 нм составляет 0,419, что с учетом градуировочной зависимости соответствует 3,12% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 9,50%.

Пример 22. Анализу в условиях примера 12 подвергли 100 мг предварительно измельченного ЛЦМ, содержание лигнина Класона в котором составляет 2,04%. Величина оптической плотности при 440 нм составляет 0,262, что с учетом градуировочной зависимости соответствует 2,04% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,09%.

Пример 23. Анализу в условиях примера 12 подвергли 50 мг опилок сосны (фракция менее 1 мм), содержание лигнина Класона в котором составляет 30,80%. Величина оптической плотности при 440 нм составляет 1,239, что с учетом градуировочной зависимости соответствует 30,60% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 0,64%.

Пример 24. Анализу в условиях примера 12 подвергли 50 мг опилок осины (фракция менее 1 мм), содержание лигнина Класона в котором составляет 18,80%. Величина оптической плотности при 440 нм составляет 0,891, что с учетом градуировочной зависимости соответствует 20,17% лигнина Класона в образце ЛЦМ. Относительная погрешность определения лигнина составляет 7,30%.

Таблица 2
Результаты определения содержания лигнина в целлюлозных полуфабрикатах
Пример Оптическая плотность при 440 нм Содержание лигнина Класона в ЛЦМ, % Погрешность определения лигнина, %
известноеопределенное по предлагаемому методу
12 1,54717,4416,59 4,9
13 1,12910,79 10,641,4
141,0749,7 9,932,4
150,843 7,217,160,8
160,702 5,855,64 3,5
17 0,6945,65,56 0,64
18 0,5494,9 4,2014,3
190,5614,76 4,309,7
200,468 4,253,5117,5
210,419 3,453,12 9,5
22 0,2622,042,04 0,1
23 1,23930,8 30,600,6
240,89118,8 20,177,3

Результаты определений, сведенные в таблице 2, свидетельствуют о хорошей точности определения содержания лигнина Класона в лигноцеллюлозных материалах.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ определения лигнина путем химической обработки лигноцеллюлозного материала с последующим отделением лигнина и определением его количества, отличающийся тем, что к 100 мг лигноцеллюлозного материала добавляют 5 мл водно-диоксанового раствора, полученного смешением концентрированной азотной кислоты и 1,4-диоксана в соотношении 1:4 (по объему), реакционную смесь нагревают на кипящей водяной бане в течение 15 минут, затем добавляют 10 мл 2 М раствора гидроксида натрия, объем реакционной смеси доводят до 50 мл дистиллированной водой и фильтруют, измеряют оптическую плотность фильтрата при 440 нм, и по величине оптической плотности судят о содержании лигнина в целлюлозном полуфабрикате.


Скачать патент РФ Официальная публикация
патента РФ № 2535018

patent-2535018.pdf
Патентный поиск по классам МПК-8:

Класс D21C3/02 с применением неорганических оснований или щелочных соединений, например сульфатные процессы 

Патенты РФ в классе D21C3/02:
способ переработки целлюлозной массы холоднощелочной экстракцией с повторным использованием щелочного фильтрата и система для его осуществления -  патент 2523973 (27.07.2014)
способ получения сульфатной целлюлозы для химической переработки -  патент 2499857 (27.11.2013)
способ обработки растительных целлюлозосодержащих материалов -  патент 2493307 (20.09.2013)
способ получения целлюлозы -  патент 2487206 (10.07.2013)
способ и система для варки полуцеллюлозы -  патент 2479682 (20.04.2013)
способ получения сульфатной целлюлозы из древесины лиственницы -  патент 2477346 (10.03.2013)
способ экстракции щепы лиственницы -  патент 2475576 (20.02.2013)
способ экстракции щепы лиственницы -  патент 2472889 (20.01.2013)
способ получения сульфатной целлюлозы из древесины лиственницы -  патент 2472888 (20.01.2013)
способ комплексной переработки древесины лиственницы -  патент 2472887 (20.01.2013)

Класс G01N33/46 древесины 

Патенты РФ в классе G01N33/46:
способ анализа формы комля дерева -  патент 2529167 (27.09.2014)
способ анализа относительного сбега комбля березы на склоне оврага -  патент 2529058 (27.09.2014)
способ ультразвукового испытания технической древесины -  патент 2526648 (27.08.2014)
устройство для фиксации образца при дендроакустических испытаниях по раннему выявлению резонансных свойств древесины на корню -  патент 2523033 (20.07.2014)
способ сравнительного испытания древесины -  патент 2522862 (20.07.2014)
способ и устройство для измерения содержания влаги в биологическом материале -  патент 2519066 (10.06.2014)
способ измерения комля древесного растения -  патент 2495418 (10.10.2013)
способ анализа ветвей кроны дерева ели -  патент 2495417 (10.10.2013)
способ и устройство определения объема штабеля круглых лесоматериалов, расположенных на автомобиле -  патент 2492477 (10.09.2013)
способ определения химической безопасности древесного композиционного материала -  патент 2492476 (10.09.2013)

Класс G01N21/27 с помощью фотоэлектрических средств обнаружения

Патенты РФ в классе G01N21/27:
способ определения окислительной модификации белков в пуле веществ средней молекулярной массы в сыворотке крови, плазме, эритроцитах и в моче -  патент 2525437 (10.08.2014)
способ визуализированного каротажа и каротажное устройство для его осуществления (варианты) -  патент 2520977 (27.06.2014)
способ контроля формы -  патент 2515123 (10.05.2014)
способ фотометрического определения редкоземельных элементов -  патент 2511375 (10.04.2014)
способ спектрофотометрического определения катионов металлов -  патент 2510013 (20.03.2014)
спектрометр на основе поверхностного плазмонного резонанса -  патент 2500993 (10.12.2013)
способ спектрофотометрического определения концентрации диоксида хлора и хлорит-иона в питьевой воде -  патент 2495404 (10.10.2013)
устройство для определения зрелости икры и способ определения зрелости икры -  патент 2493552 (20.09.2013)
способ контроля вещества в атмосфере и устройство для его осуществления -  патент 2487337 (10.07.2013)
способ калибровки измерительной системы -  патент 2479832 (20.04.2013)


Наверх