дисперсный композиционный материал

Классы МПК:C22C1/05 смеси металлического порошка с неметаллическим
C22C9/01 с алюминием в качестве следующего основного компонента
B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты
B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 
Автор(ы):, , , ,
Патентообладатель(и):Князьков Виктор Леонидович (RU),
Князьков Константин Викторович (RU)
Приоритеты:
подача заявки:
2012-09-10
публикация патента:

Изобретение относится к сварке, в частности к изготовлению порошков, используемых для плазменно-порошковой наплавки антифрикционных упрочняющих покрытий при изготовлении износостойких деталей. Дисперсный композиционный материал для наплавки антифрикционных покрытий на основе алюминиевой бронзы содержит, мас.%: 0,5-2,5 нанопорошка оксида алюминия с размером частиц 20-140 нм; порошок алюминиевой бронзы - остальное. Использование композиционного материала позволяет повысить твердость и износостойкость покрытий или сварных соединений. 7 ил., 2 табл.

дисперсный композиционный материал, патент № 2534479 дисперсный композиционный материал, патент № 2534479 дисперсный композиционный материал, патент № 2534479 дисперсный композиционный материал, патент № 2534479 дисперсный композиционный материал, патент № 2534479 дисперсный композиционный материал, патент № 2534479 дисперсный композиционный материал, патент № 2534479

Формула изобретения

Дисперсный композиционный материал для наплавки антифрикционных покрытий на основе алюминиевой бронзы, характеризующийся тем, что он содержит модифицирующую добавку нанопорошка оксида алюминия с размером частиц 20,0-140 нм при следующем соотношении компонентов, мас.%:

нанопорошок оксида алюминия 0,5-2,5
порошок алюминиевой бронзы остальное

Описание изобретения к патенту

Изобретение относится к сварке и родственным процессам, в частности к изготовлению порошков, используемых для плазменно-порошковой наплавки антифрикционных упрочняющих покрытий при изготовлении износостойких деталей.

Известно традиционное использование порошков на основе бронзы при упрочнении деталей машин, например дисперсный упрочненный материал Cu-Al2O3 , полученный методом внутреннего окисления порошка сплава меди с алюминием (Е.П. Данелия, В.Н. Розенберг. Внутриокисленные сплавы. - М.: Металлургия. 1978, 232 с.). Однако данный процесс получения порошка технологически сложен. Получаемое наплавленное покрытие обладает неплохим качеством, но недостаточно высокой твердостью, износостойкостью.

Известны композиционные материалы на основе меди для сварки и наплавки МНЖКТ5-1-0,2-0,2, БрКМц3-1, БрХНТ (ГОСТ 16130-90 Проволока и прутки из меди и сплавов на медной основе сварочные. Технические условия). Использование этих проволок недостаточно эффективно при наплавке деталей, поверхности которых подвергаются высоким механическим нагрузкам, так как наплавленные, с использованием вышеуказанных материалов поверхности имеют твердость, не превышающую 240 НВ, а также бериллиевых бронз, твердость которых составляет до 330 НВ после старения (315-320°C, 2-3 часа выдержки). Недостатком бериллиевой бронзы является токсичность при нанесении, высокая стоимость, а также необходимость последующей упрочняющей термической обработки, которая отрицательно влияет на свойства основного металла. Существует ряд крупногабаритных изделий, таких как бронзовые втулки экскаваторов ЭКГ-125, обладающие недостаточной твердостью, около 220 НВ и поэтому часто выходят из строя. Упрочняющее покрытие таких втулок ввиду значительных размеров выполнить технологически сложно или очень дорого.

Известен дисперсно-упрочненный материал на основе меди, применяемый для изготовления электроконтактных деталей, содержащий алюминий и углерод (дисперсный композиционный материал, патент № 2534479 p Nr. 400500, Kupferwerkstoff fur elektrisch leitende Verschleisstei'le. дисперсный композиционный материал, патент № 2534479 дисперсный композиционный материал, патент № 2534479 Nr. 1341/91 vom 08.07.1993). В ходе изготовления порошка путем размола смеси исходных компонентов в шаровой мельнице в воздушной среде и последующей температурно-деформационной обработки размола происходит образование ультрадисперсных частиц оксида и карбида алюминия, которые увеличивают твердость материала и положительно влияют на ресурс работы деталей, изготовленных с помощью такого материала. Однако ультрадисперсные частицы порошков материалов в основном имеют свойства самих химических материалов и не могут критическим образом влиять на изменение свойств материалов с их использованием.

Известно применение нанопорошков для получения наплавленных металлических антифрикционных покрытий, обладающих высокими физико-химическими свойствами (Г.Г.Крушенко. Нанотехнологии в конструкционных сплавах // Ультрадисперсные порошки, наноструктуры, материалы: получение, свойства, применение: Тр. научно-технич. конференции с международным участием. - V Старовские чтения. - Красноярск: Сибирский федеральный университет, КНЦ СО РАН. 2009. - С.268-272).

Например, известно введение небольшого количества (до 0,2%) наноразмерных частиц карбида вольфрама в металл, наплавленный с использованием электродугового и электрошлакового процессов (Соколов Г.Н., Лысак В.И., Трошков А.С, Зорин И.В., Горемыкина С.С., Самохин А.В., Алексеев Н.В., Цветков Ю.В. Модифицирование наплавленного металла нанодисперсными карбидами вольфрама. Физика и химия обработки материалов, 2009, № 6, с.41-47). Порошок монокарбида вольфрама с размером частиц менее 0,1 мкм совместно с порошком никеля (99,9%) с размером частиц 50-80 мкм обрабатывали в планетарной мельнице. Получали никелевые гранулы, в которых содержалось около 30 масс.% нанокарбида. Полученный порошок вводили в порошковую проволоку и использовали для наплавки износостойких покрытий электродов, стержней и подобных изделий.

К недостаткам данного материала можно отнести то, что метод его получения позволяет повысить механические свойства сварных соединений и наплавок, однако в результате применения для модификации тугоплавких частиц карбидов они могут сохраняться в наплавленном металле, т.к. температура плавления карбида вольфрама 2870°C, а температура сварочной ванны при применении дуговых и плазменных источников теплоты не превышает 2300 К [Теория сварочных процессов: Учебник для вузов / А.В.Коновалов, А.С.Куркин, Э.Л.Макаров, В.М.Неровный, Б.Ф.Якушин; Под ред. В.М.Неровного. - М.: Изд-во МГТУ им. Н.Э.Баумана, 2007. - С.263-264], поэтому присутствие сверхтвердых частиц карбида вольфрама в наноструктурированном материале неизбежно и это, соответственно, приведет к снижению антифрикционных и изменению других свойств наплавленного металла.

Известно использование наночастиц в процессе модифицирования сварных соединений (Гущин Д.А. и др. Анализ и поиск перспективных направлений комплексного модифицирования металла сварных швов при автоматической сварке под флюсом мостовых металлоконструкций. - Современные решения обеспечения безопасности мостов. - Научные труды ОАО ЦНИИС. Вып. № 261. - М. 2011, с.19-23), где в качестве основного состава использован тугоплавкий материал на основе титанового порошка.

Например, при сварке титанового сплава ОТН-1 проводится обработка ванны порошковой смесью наночастиц циркония размером 0,1 мкм - 0,3 масс.% и титанового порошка размером 0,6 мкм - остальное. Для повышения физико-механических свойств сварного соединения в порошковую смесь вводится модификатор в виде наночастиц Al2O3 дисперсностью 60-90 нм и углеродных трубок (таунит). Однако обработка тугоплавких соединений требует использования повышенных температур (например, в зоне сварки температура столба дуги превышает 6000°C), при которых возможно самовозгорание наночастиц. С целью предотвращения этого процесса наночастицы - модификаторы вводят в сварочную ванну в смеси с охлаждающим порошком (микрохолодильниками). При этом модифицирующая смесь приготовляется в специальных мельницах.

Такой процесс приготовления порошка для сварки с повышенными механическими свойствами сварного соединения технологически сложен и требует больших затрат.

Задачей предлагаемого изобретения является разработка композиционного порошкового материала на основе алюминиевой бронзы, позволяющего при его использовании значительно повысить твердость и износостойкость антифрикционных покрытий или сварных соединений и упростить технологию его приготовления и применения.

Поставленная задача решается за счет того, что предложен дисперсный композиционный материал на основе алюминиевой бронзы, включающий добавку модифицирующего нанопорошка оксида алюминия с размером частиц 20,0-140 нм при следующем соотношении компонентов, масс.%:

нанопорошок оксида алюминия 0,5-2,5
порошок алюминиевой бронзы остальное

В данном решении впервые предложено добавлять в качестве модификатора нанопорошок оксида алюминия (Al2O3) в мелкодисперсную алюминиевую бронзу при получении композиционного материала для наплавки антифрикционного покрытия на различные детали, требующие повышенной твердости и износостойкости, не уступающие применению тугоплавких покрытий.

Разработка осуществлялась с целью установить оптимальное соотношение размера частиц и количества нанопорошка оксида алюминия как модификатора в составе бронзы, при котором достигается модифицирующее действие нанопорошка Al 2O3, позволяющее получить максимально высокую твердость и износостойкость наплавляемого покрытия или прочность сварного соединения на уровне или превышающую твердость наплавки при использовании тугоплавких соединений.

В качестве алюминиевой бронзы использовали доступный технологичный материал - порошок алюминиевой бронзы ПГ-19М-01, имеющий химический состав, масс.%: Feдисперсный композиционный материал, патент № 2534479 4,0; Al-8,5-10,5; Cu - остальное, грануляция порошка 40-100 мкм, твердость наплавленного слоя при использовании данного порошка в пределах 65-72 НВ.

В качестве модификатора выбрали нанопорошок оксида алюминия, изготовленный по ТУ 2133-001-7634032-2006 «Гидроксид алюминия - бемит», прокаленный в течение 2-х часов при температуре 200°C, размер кристаллитов дисперсный композиционный материал, патент № 2534479 1000Å, удельная плотность не более 3,06 г/см 3, удельная специфическая поверхность в пределах 10-400 м2/г.

Подготовку активированной смеси порошка алюминиевой бронзы и модифицирующего нанодисперсного порошка Al2O3 выполняли путем смешения их в планетарной мельнице, в которой происходит механохимическая обработка (активация) порошковой смеси, способствующая образованию прочных химических связей между наночастицами и частицами бронзы.

В результате совместной обработки в планетарной мельнице получали модифицированную металлокерамическую смесь в виде микрогранул, содержащую от 0,5 до 2,5% частиц нанопорошка Al2O 3, остальное порошок алюминиевой бронзы ПГ-19-01.

Технологические режимы подготовки порошковой смеси для наплавки на основе различных марок алюминиевой бронзы приведены в таблице 1.

Были опробованы и другие марки составов модификатора на основе оксида алюминия, имеющие различные физико-химические характеристики. Однако технические характеристики, полученные с их использованием, позволили выявить, что для достижения требуемого результата они значительно уступают использованию оксида алюминия в виде бемита (таблица 2).

Количество модифицирующей Al2O3 добавки определяли путем плазменно-порошковой наплавки контрольных образцов на установке УПН-303, последовательно изменяя расход модифицирующей добавки в наплавляемом порошке. В качестве образцов служили ролики из стали 40Х после изотермической закалки в расплаве калиевой селитры. Изотермическую закалку производили при температуре 860°C с целью предотвращения деформации роликов.

Процесс наплавки выполняли на следующих режимах: постоянный ток обратной полярности, ток наплавки Iн=140А, напряжение при наплавке Up=30 B, скорость наплавки Vн изменяли от 10 до 18 м/ч, расход порошка (смеси порошков) Vп изменяли от 1,5 до 5 кг/ч, давление плазмообразующего газа Рплаз.=0,4 МПа, давление транспортирующего газа Ртран.=0,1 МПа. При этом в ходе выполнения плазменно-порошковой наплавки «В головной части ванны они (частицы порошка) плавятся под действием теплоты плазменной дуги, а в хвостовой - ускоряют охлаждение, действуя как микрохолодильники. В этом случае имеет место подстуживание ванны, уменьшается средняя температура и, что весьма важно, глубина проплавления основного металла. Нерасплавившиеся частицы могут становиться дополнительными центрами кристаллизациидисперсный композиционный материал, патент № 2534479 Образование дополнительных центров кристаллизации измельчает структуру и придает ей разориентированный характер, что может способствовать улучшению эксплуатационных свойств наплавленного металла.» [Гладкий П.В., Переплетчиков Е.Ф., Рябцев И.А. Плазменная наплавка. - К.: «Екотехнологiя», 2007. - С.111-113.].

Изменения структур и твердости наплавленных образцов в зависимости от концентрации модифицирующей добавки нанопорошка оксида алюминия показаны на рисунках фиг.1-5. Твердость измеряли твердомером Микротвердомер ПМТ - 3 (нагрузка на алмазную пирамидку от 2 до 200 г.), погрешность ±4%.

Рисунки выполнены путем использования Цифровой фотокамеры COOLPIX 4500.

Показано, что твердость наплавленных образцов возрастает (изменяется) от 69 НВ просто бронзы без добавки до 465 НВ при добавке 2,5% Al2O3.

Показаны изменения структуры данных образцов при помощи металлографического рабочего микроскопа ММР-2Р (увеличение 100x-1000x).

На фиг.6 представлен график изменения твердости (НВ) при изменении концентрации нанодисперсного порошка Al2O3 . График показывает, что повышение твердости происходит уже при 0,5% и с возрастанием концентрации до 2,5% повышается до 465 НВ, после чего кривая выходит на плато и затем снижается. Это доказывает, что увеличение концентрации более 2,5% нецелесообразно.

Благородя специфическим свойствам поверхности наночастиц, введение их в составы порошков в определенном размерном диапазоне придает материалам уникальные свойства. При введении в состав алюминиевой бронзы модифицирующей добавки оксида алюминия с размером частиц 20,0-140 нм происходит трансформация структуры наплавляемой алюминиевой бронзы в модифицированный субдисперсный раствор, обеспечивающий твердость покрытия до 589 НВ.

Проведенное электронно-микроскопическое исследование наночастиц Al2 O3 показывает характеристику частиц, позволяющую обеспечить такую высокую твердость.

Измерение размеров частиц Al2O3, необходимых для приготовления нанопорошка - модификатора, проводилось по методу случайных секущих. Было измерено ~ 500 частиц. Средний размер частиц определялся по гистограмме (распределению частиц по размерам), представленной на фиг.7.

Микродифракционная картина, полученная с отдельной частицы, свидетельствует о том, что:

1) частица - это фаза дисперсный композиционный материал, патент № 2534479 -Al2O3 (корунд), обладающая ромбоэдрической кристаллической решеткой (пространственная группа R3c) с параметрами a=0.4758 нм и c=1.2991 нм;

2) частица является монокристаллом, т.к. на микродифракционной картине присутствует только одна плоскость, а именно (дисперсный композиционный материал, патент № 2534479 .10.2) фазы Al2O3, и на темнопольном изображении эта частица «светится» целиком и равномерно.

Новый технический результат достигается вследствие:

1 - применения частиц Al2O3 наноразмерного диапазона в количестве 0,5-2,5 масс.% (эффект размерности);

2 - высокой чистоты и стабильности других параметров применяемого порошка Al2O3 , гарантированного ТУ 2133-001-7634032-2006;

3 - уникальных свойств керамического материала Al2O 3, таких как твердость - 9 по шкале Мооса (тверже Al 2O3 только алмаз), низкий коэффициент трения, высокая коррозионная стойкость, высокая прочность, высокая ударная вязкость, низкая химическая активность;

4 - технологической простоты получения порошка модифицирующего материала;

5 - особенностей применения технологии плазменно-порошковой наплавки, при которой в головной части ванны частицы порошка плавятся под действием теплоты плазменной дуги, а в хвостовой - ускоряют охлаждение, действуя как микрохолодильники.

Изобретение нового модифицированного покрытия может быть использовано при упрочнении тяжело нагруженных и ответственных деталей машин, таких как, втулки подшипниковых узлов буровых долот, работающих на подшипниках скольжения, втулок, поршней гидроцилиндров, зубатых колес, плунжерных пар и других изделий, требующих повышенной твердости и износостойкости.

Таблица 1
Технологические режимы подготовки порошковой смеси для наплавки
Состав смеси Режим механической активацииТвердость
п/п порошков (масс.%)дисперсный композиционный материал, патент № 2534479 направленной поверхности, НВ
Бронза БемитТУ2133-001-7634032-2006 прокаленный (Al2O 3)Гравитационное ускорение, G Частота вращения, об/мин Период активации, мин
Марка бронзы: ПГ-19М-01 (ТУ 48-19-383-91)
1.100- 20-30200-30025-30 65-72
2. 99,50,5 20-30200-30025-30 128-144
3. 99,01,0 20-30200-30025-30 185 - 234
4.98,02,0 20-30200-300 25-30245 - 295
5.97,52,5 20-30200-300 25-30355 -465
Марка бронзы: ПР-НД42СР (ТУ 14-1-3997-85)
1.100- 20-30200-30025-30 200
2. 99,50,5 20-30200-30025-30 225-246
3. 99,01,0 20-30200-30025-30 298-224
4. 98,02,0 20-30200-30025-30 325-342
5. 97,52,5 20-30200-30025-30 476-589
Марка бронзы: ПР-Бр08НСР (ТУ 14-127-309-01)
1.100- 20-30200-30025-30 120
2. 99,50,5 20-30200-30025-30 167-188
3. 99,01,0 20-30200-30025-30 234-286
4. 98,02,0 20-30200-30025-30 281-304
5. 97,52,5 20-30200-30025-30 307-365

дисперсный композиционный материал, патент № 2534479

Класс C22C1/05 смеси металлического порошка с неметаллическим

спеченная твердосплавная деталь и способ -  патент 2526627 (27.08.2014)
композиционный электроконтактный материал на основе меди и способ его получения -  патент 2525882 (20.08.2014)
способ получения поликристаллического композиционного материала -  патент 2525005 (10.08.2014)
шихта для изготовления материала для сильноточных электрических контактов и способ изготовления материала -  патент 2523156 (20.07.2014)
твердосплавное тело -  патент 2521937 (10.07.2014)
способ получения беспористого карбидочугуна для изготовления выглаживателей -  патент 2511226 (10.04.2014)
способ получения композиционного материала -  патент 2509818 (20.03.2014)
порошковый композиционный материал -  патент 2509817 (20.03.2014)
спеченный материал для сильноточного скользящего электроконтакта -  патент 2506334 (10.02.2014)
наноструктурный композиционный материал на основе чистого титана и способ его получения -  патент 2492256 (10.09.2013)

Класс C22C9/01 с алюминием в качестве следующего основного компонента

Класс B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты

способ получения железного порошка -  патент 2529129 (27.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
способ получения термоэлектрического материала -  патент 2528280 (10.09.2014)
ветошь для чистки ствола огнестрельного оружия -  патент 2527577 (10.09.2014)
способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ получения наноматериала на основе рекомбинантных жгутиков археи halobacterium salinarum -  патент 2526514 (20.08.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
износостойкий композиционный керамический наноструктурированный материал и способ его получения -  патент 2525538 (20.08.2014)

Класс B23K35/30 с основным компонентом, плавящимся при температуре ниже 1550°C 

быстрозакаленный припой из сплава на основе титана-циркония -  патент 2517096 (27.05.2014)
сварочная проволока -  патент 2511382 (10.04.2014)
пригодный для сварки, жаропрочный, стойкий к окислению сплав -  патент 2507290 (20.02.2014)
гамма/гамма' -суперсплав на основе никеля с многочисленными реакционно-активными элементами и применение указанного суперсплава в сложных системах материалов -  патент 2500827 (10.12.2013)
ролик для поддерживания и транспортирования горячего материала, имеющий наплавленный посредством сварки материал, присадочный сварочный материал, а также сварочная проволока для проведения наплавки сваркой -  патент 2499654 (27.11.2013)
аустенитный сварочный материал и способ профилактического технического обслуживания для предотвращения коррозионного растрескивания под напряжением и способ профилактического технического обслуживания для предотвращения межкристаллитной коррозии с его использованием -  патент 2488471 (27.07.2013)
сварочная проволока из нержавеющей стали с флюсовым сердечником для сварки оцинкованного стального листа и способ дуговой сварки оцинкованного стального листа с применением указанной сварочной проволоки -  патент 2482947 (27.05.2013)
сварочная проволока из низкоуглеродистой легированной стали -  патент 2477334 (10.03.2013)
способ нанесения покрытия на поверхность деталей с помощью электроконтактной сварки с использованием порошкового присадочного материала, содержащего железный порошок, и присадочный материал для его осуществления -  патент 2473413 (27.01.2013)
твердый припой -  патент 2469829 (20.12.2012)
Наверх