способ аккумулирования энергии абсорбционным тепловым насосом

Классы МПК:F24D11/02 с использованием тепловых насосов 
F24J3/08 геотермального тепла
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северо-Кавказский федеральный университет" (RU)
Приоритеты:
подача заявки:
2013-08-07
публикация патента:

Изобретение относится к способам аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса. Согласно способу избыточно выработанная электрическая энергия переводится в тепловую энергию и с избыточно выработанной тепловой энергией используется для хемотермического аккумулирования энергии в абсорбционном тепловом насосе. При этом для получения тепла аккумулированный в конденсаторе жидкий хладагент направляется в абсорбер. Технический результат - возможность аккумулирования как тепловой, так и электрической энергии при суточном маневрировании отпуска энергии потребителю. 1 ил. способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527

способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527

Формула изобретения

Способ аккумулирования энергии абсорбционным тепловым насосом в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса, отличающийся тем, что избыточно выработанная электрическая энергия переводится в тепловую энергию и с избыточно выработанной тепловой энергией используется для хемотермического аккумулирования энергии в абсорбционном тепловом насосе, при этом для получения тепла аккумулированный в конденсаторе жидкий хладагент направляется в абсорбер.

Описание изобретения к патенту

Изобретение относится к способам аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбционного теплового насоса.

Известны способы аккумулирования энергии в водяных аккумуляторах горячей воды или сетевой воды [Ионин А.А., Хлыбов Б.М., Братенков В.Н., Терлецкая Е.Н. Под ред. А.А. Ионина. Теплоснабжение. Стройиздат, 1982. - 336 с.].

Недостатками известного способа являются низкая энергоемкость аккумуляторов и, соответственно, значительные габариты.

Известен также способ аккумулирования энергии в высокотемпературных хемотермических системах на базе десорбции аммиака из водного раствора [Столяревский А.Я. Хемотермические циклы и установки аккумулирования энергии. Атомная энергетика. Атомно-водородная энергетика. Научно-технический центр «ТАТА». 2005. - С.45-58].

Недостатком является то, что хемотермические энергоаккумулирующие высокотемпературные системы на базе десорбции аммиака из водного раствора предполагают использование сателлитной аммиачной турбины в период провала электрической нагрузки. Однако применение такой турбины приведет к существенному усложнению схемы когенерационной установки.

Известен также способ аккумулирования энергии в низкотемпературных хемотермических системах на базе десорбции аммиака из водного раствора [Столяревский А.Я. Хемотермические циклы и установки аккумулирования энергии. Атомная энергетика. Атомно-водородная энергетика. Научно-технический центр «ТАТА». 2005. - С.45-58].

Недостатком является необходимость установки специального аккумулятора.

Наиболее близким к предложенному является способ тригенерации для выработки электроэнергии, тепла и холода для использования в системах энергоснабжения [авт. свид. СССР № 243802 с приоритетом от 23.03.1964 г. Кремнев О.А., Чавдаров А.С., Балицкий С.А., Журавленко В.Я., Гершкович В.Ф., Згурский О.А., Пекер Я.Д., Медведев М.И.] с помощью когенерационной установки для выработки электроэнергии, тепла, а в летнее время - холода с помощью абсорбционной холодильной машины (АБХМ), работающей на избыточном тепле цикла. А также способ извлечения геотермального тепла [патент № 2288413, бюл. № 33, 2006] и способ использования геотермального тепла [патент № 2358209, бюл. № 16, 2009].

Однако указанные способы не дают возможности регулирования отпуска электрической и тепловой энергии вследствие их неравномерности.

Техническим результатом заявляемого изобретения является возможность аккумулирования как тепловой, так и электрической энергии при суточном маневрировании отпуска энергии потребителю. Разработанный способ использования абсорбционного теплового насоса (АТН) позволит аккумулировать энергию для последующего преобразования ее как в тепло, так и в холод, что существенно увеличивает гибкость режима отпуска энергии потребителю.

Указанный технический результат достигается за счет того, что в когенерационной установке, работающей по циклу тригенерации, в системах извлечения геотермальной энергии абсорбционным тепловым насосом, в системах использования низкопотенциальной тепловой энергии с помощью абсорбциионного теплового насоса абсорбционный тепловой насос может быть использован как хемотермическая энергоаккумулирующая низкотемпературная система на базе десорбции аммиака из водного раствора или бромистого лития из водного раствора в зависимости от вида бинарной смеси, используемой в АТН. Избыточно выработанная электрическая энергия переводится в тепловую энергию (в электрическом котле или путем нагрева бинарной смеси в генераторе АТН) и с избыточно выработанной тепловой энергией цикла используется для хемотермического аккумулирования энергии в абсорбционном тепловом насосе. Для получения тепла аккумулированный в конденсаторе жидкий хладагент направляется в абсорбер, а для получения холода - в испаритель.

На фиг.1 представлена схема АТН для осуществления аккумулирования энергии в когенерационных системах, работающих в цикле тригенерации по предлагаемому способу.

Схема включает в себя следующие элементы абсорбционного теплового насоса: Кп - кипятильник (генератор пара); С - сухопарник; Кд - конденсатор; РВ - дроссельно-регулирующий вентиль; И - испаритель; Аб - абсорбер; Н - насос; Т - теплообменник.

Способ осуществляется следующим образом.

Тепло Qак, получаемое при избыточно вырабатываемой электрической энергии или за счет избыточно вырабатываемой тепловой энергии при низком потреблении тепла на нужды теплоснабжения, подается в контур генератора Кп. В генераторе тепло передается в водоаммиачный раствор или в водный раствор бромистого лития в зависимости от вида бинарного раствора АТН, десорбируя из него аммиак (бромистый литий), который осушается в сухопарнике С и поступает в конденсатор Кд. В конденсаторе накапливается жидкий аммиак (бромистый литий) за счет отвода тепла Qк водой от системы горячего водоснабжения. При недостатке тепловой нагрузки жидкий аммиак (бромистый литий) с помощью насоса Н подается в абсорбер Аб, куда подается и слабый раствор аммиака (бромистого лития) через дроссель РВ2. В теплоиспользующей части абсорбера происходит испарение аммиака (бромистого лития) и его экзотермическая абсорбция в абсорбере Аб, а тепло Qаб передается в теплосеть. Полученный крепкий раствор насосом Н вновь подается в генератор Kп. При необходимости получения холода Qо жидкий аммиак (бромистый литий) подается из конденсатора через дроссельно-регулирующий вентиль РВ1 в испаритель И. А образующиеся при испарении пары хладагента поглощаются абсорбентом в абсорбере Аб. Полученный крепкий раствор насосом Н вновь подается в генератор Кп, т.е. АТН может работать в режиме холодильной машины.

Пример осуществления способа

Известно, что все энергетические нагрузки, как тепловые, так и электрические, отличаются неравномерностью.

При проектировании и расчете систем теплоснабжения в качестве определяющих нагрузок принимаются максимальные часовые расходы тепла по отдельным видам теплопотребления и суммарные часовые расходы тепла по абоненту в целом с учетом несовпадения часовых максимумов расхода тепла по отдельным видам теплопотребления. В летний период возникает проблема полезного применения избыточного тепла.

Высокой степенью неравномерности действия отличается также и распределение электропотребления по часам суток.

Для увеличения аккумулирующей способности конденсатор АТН может быть снабжен аккумулирующим баком.

При мощности когенерационной установки в 2 МВт и коэффициенте часовой неравномерности потребления электрической энергии и тепловой энергии до 30% АТН может иметь следующие характеристики.

Технические характеристики АТН (скрытая теплота конденсации аммиака при 30°C равна 1145,5 кДж/кг; плотность - 595 кг/м 3; давление насыщения - 1,167 МПа):

- тепловая мощность генератора - 2способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527 0,3=0,6 МВт;

- тепловая мощность теплообменника «слабый-крепкий» раствор - 0,2 МВт;

- тепловая мощность конденсатора аммиака - 0,6+0,2=0,8 МВт;

- тепловая мощность охладителя раствора в абсорбере - 0,8+0,2=1,0 МВт.

Объем хранилища сконденсированного аммиака - 800способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527 3600/(1145,5способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527 595)=4,2 м3, при работе - зарядка 1 час.

Для сравнения эффективности, при применении водяного аккумулятора (емкостной водяной подогреватель воды) в режиме нагрева 10/70°C, он будет иметь аккумулирующую емкость - 800способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527 3600/((70-10)способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527 4,2способ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527 1000)=11,4 м3 (где - 4,2 кДж/(кгспособ аккумулирования энергии абсорбционным тепловым насосом, патент № 2533527 К) - удельная теплоемкость воды; 1000 кг/м3 - плотность воды).

Класс F24D11/02 с использованием тепловых насосов 

теплоаккумуляционная система -  патент 2520003 (20.06.2014)
способ посезонного использования низкопотенциального тепла приповерхностного грунта и скважинные теплообменники для осуществления вариантов способа -  патент 2483255 (27.05.2013)
устройство с полезным использованием результатов работы теплового насоса -  патент 2456512 (20.07.2012)
система централизованного тепло- и водоснабжения -  патент 2416762 (20.04.2011)
способ использования теплоаккумуляционных свойств грунта -  патент 2416761 (20.04.2011)
система горячего водоснабжения -  патент 2386901 (20.04.2010)
способ работы теплового генератора без потребления электрической энергии и устройство для его осуществления -  патент 2374564 (27.11.2009)
теплонасосная система теплохладоснабжения -  патент 2351850 (10.04.2009)
способ утилизации низкопотенциального тепла -  патент 2347145 (20.02.2009)
система однотрубного теплоснабжения -  патент 2320930 (27.03.2008)

Класс F24J3/08 геотермального тепла

петротермальная электростанция и устройство монтажа теплоотборной системы петротермальной электростанции -  патент 2529769 (27.09.2014)
способ комплексного использования геотермального тепла с помощью пароэжекторного теплового насоса -  патент 2528213 (10.09.2014)
сеть для нагревания и охлаждения зданий -  патент 2486416 (27.06.2013)
система для извлечения гидротермальной энергии из глубоководных океанических источников и для извлечения ресурсов со дна океана -  патент 2485316 (20.06.2013)
способ посезонного использования низкопотенциального тепла приповерхностного грунта и скважинные теплообменники для осуществления вариантов способа -  патент 2483255 (27.05.2013)
грунтовый теплообменник -  патент 2472076 (10.01.2013)
система теплоснабжения и горячего водоснабжения на основе возобновляемых источников энергии -  патент 2445554 (20.03.2012)
геоэлектростанция и способ повышения ее мощности -  патент 2441185 (27.01.2012)
установка для использования геотермальной энергии низкотемпературных подземных горных пород -  патент 2430312 (27.09.2011)
система и распределительная цистерна для сети низкотемпературной энергии -  патент 2429428 (20.09.2011)
Наверх