устройство для проведения исследований динамического состояния горных пород в скважине

Классы МПК:G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00
G01V1/40 сейсмический каротаж 
G01V3/18 электрический или магнитный каротаж 
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Институт геофизики им. Ю.П. Булашевича Уральского отделения Российской академии наук (RU)
Приоритеты:
подача заявки:
2013-05-16
публикация патента:

Изобретение относится к области геофизики и может быть использовано при каротажных работах. Сущность: устройство содержит следующие элементы: датчики (1-3) геоакустических сигналов, первый коммутатор (4), первый усилитель (5), блок фильтров (6), блок выпрямителей (7), второй коммутатор (8), аналого-цифровой преобразователь (9), блок (10) передачи цифрового сигнала, датчик (11) магнитной восприимчивости, измерительная схема (12) магнитометра, аналоговые запоминающие устройства (13, 14), вычитающий усилитель (15), генератор (16) прямоугольного напряжения, ферритовая антенна (17), третий коммутатор (18), три конденсатора (19), второй усилитель (20), смеситель (21), фильтр нижних частот (22), переключаемый генератор (23), выпрямитель (24), блок (25) управления, блок (26) питания. Технический результат: повышение информативности исследований. 1 ил. устройство для проведения исследований динамического состояния   горных пород в скважине, патент № 2533334

устройство для проведения исследований динамического состояния   горных пород в скважине, патент № 2533334

Формула изобретения

Устройство для проведения исследований динамического состояния горных пород в скважине, содержащее три взаимоортогональных датчика геоакустических сигналов, первый коммутатор, усилитель, блок фильтров, блок выпрямителей, второй коммутатор, аналого-цифровой преобразователь, блок передачи, ферритовую антенну, отличающееся тем, что в него дополнительно введены третий коммутатор, конденсаторы, второй усилитель, смеситель, переключаемый генератор, фильтр нижних частот, выпрямитель, датчик магнитной восприимчивости, измерительная схема магнитометра, низкочастотный генератор прямоугольных импульсов, два аналоговых запоминающих устройства, вычитающий усилитель, при этом ферритовая антенна через третий коммутатор подключается поочередно к конденсаторам и далее через второй усилитель и смеситель к фильтру нижних частот и далее к выпрямителю, который в свою очередь подключен к входу второго коммутатора, а низкочастотный генератор прямоугольных импульсов подключен к намагничивающей катушке датчика магнитной восприимчивости, а феррозонд датчика через измерительную схему магнитометра - ко входам аналоговых запоминающих устройств, которые в свою очередь через вычитающий усилитель подключены ко входу второго коммутатора.

Описание изобретения к патенту

Изобретение относится к геофизике и применяется для исследования динамического состояния горных пород в скважине.

Процесс трещинообразования в горных породах сопровождается сейсмоакустической эмиссией, а при возникновении электрических разрядов на границе разрыва трещин - электромагнитным излучением. Однако наличие сейсмоакустического излучения не всегда сопровождается интенсивным электромагнитным излучением, поскольку в разных условиях релаксация электрических зарядов происходит с учетом свойств, характеризующих электропроводность среды. С другой стороны, электромагнитное излучение более чувствительно к деформации пород, так как прежде, чем произойдет хрупкий разрыв, идет разделение электрических зарядов расходящихся стенок трещин. Динамически активными зонами являются, как правило, зоны контактов пород с различными физическими свойствами, зоны оруденения. Измерение магнитной восприимчивости и напряженности геомагнитного поля по стволу скважины позволяет проводить геологическое расчленение пород по магнитным свойствам и выделять потенциально активные зоны для дальнейших исследований.

Одновременное измерение трех составляющих вектора естественного геоакустического излучения, электромагнитной эмиссии на различных частотах, осевой составляющей вектора геомагнитного поля и величины магнитной восприимчивости горных пород в скважине значительно увеличивают объем информации о геодинамическом состоянии горных пород в их естественном залегании, получаемой за одну спускоподъемную операцию. Это значительно понижает стоимость геофизических исследований и расширяет область применения предлагаемого устройства.

Известно устройство [1], содержащее три взаимоортогональных датчика геоакустических сигналов, коммутатор, блок управления, антенну для приема электромагнитных сигналов, высокочастотный перестраиваемый усилитель.

К недостаткам данного устройства относится то, что он обладает низкой чувствительностью электромагнитного канала, не содержит канала измерения магнитной восприимчивости и геомагнитного поля. Требует трехжильного кабеля и не преобразует измеряемые сигналы в цифровую форму.

Известно устройство [2], содержащее три взаимоортогональных датчика геоакустических сигналов.

Однако применение частотно-импульсного модулятора, работающего на частотах очень близко к частоте регистрируемых электромагнитных сигналов, приводит к большой погрешности их измерения.

Наиболее близким техническим решением к предлагаемому изобретению является устройство [3], содержащее в скважинном приборе три взаимоортогональных датчика геоакустических сигналов, коммутаторы, усилитель сигналов, блок фильтров, аналого-цифровой преобразователь, блок управления, блок передачи.

Недостатком данного устройства является отсутствие в нем каналов измерения электромагнитных сигналов, магнитной восприимчивости и геомагнитного поля, что существенно снижает возможность определения динамики среды.

Предлагаемое устройство для проведения исследований динамического состояния горных пород в скважине, содержащее три взаимоортогональных датчика геоакустических сигналов, первый коммутатор, усилитель, блок фильтров, блок выпрямителей, второй коммутатор, аналого-цифровой преобразователь, блок передачи, ферритовую антенну, отличается тем, что в него дополнительно введены третий коммутатор, конденсаторы, второй усилитель, смеситель, переключаемый генератор, фильтр нижних частот, выпрямитель, датчик магнитной восприимчивости, измерительная схема магнитометра, низкочастотный генератор прямоугольных импульсов, два аналоговых запоминающих устройства, вычитающий усилитель, при этом ферритовая антенна через третий коммутатор подключается поочередно к конденсаторам и далее, через второй усилитель и смеситель к фильтру нижних частот и далее к выпрямителю, который, в свою очередь, подключен к входу второго коммутатора, а низкочастотный генератор прямоугольных импульсов подключен к намагничивающей катушке датчика магнитной восприимчивости, а феррозонд датчика через измерительную схему магнитометра ко входам аналоговых запоминающих устройств, которые в свою очередь через вычитающий усилитель подключены ко входу второго коммутатора.

На чертеже изображена функциональная схема устройства.

1, 2, 3 - датчики геоакустических сигналов

4 - первый коммутатор датчиков

5 - усилитель

6 - блок фильтров

7 - блок выпрямителей

8 - второй коммутатор

9 - аналого-цифровой преобразователь

10 - блок передачи

11 - датчик магнитной восприимчивости

12 - измерительная схема магнитометра

13, 14 - аналоговые запоминающие устройства

15 - вычитающий усилитель

16 - генератор прямоугольного напряжения

17 - ферритовая антенна

18 - третий коммутатор

19 - три конденсатора

20 - усилитель

21 - смеситель

22 - фильтр нижних частот

23 - переключаемый генератор

24 - выпрямитель

25 - блок управления

26 - блок питания.

Работает устройство следующим образом. Цикл работы устройства состоит из 15 тактов. Управляет работой устройства блок управления 25. В первый такт отключается блок передачи 10, что позволяет синхронизировать последовательность тактов, следующих за паузой в передаче информации. Во второй, третий и четвертый такт коммутатор 4 подключает датчик геоакустических сигналов 1 к усилителю 5. Выходной сигнал блока 5 подается на блок фильтров 6, который разделяет сигнал на три полосы и подает эти частоты на входы блока выпрямителей 7 и, далее, через коммутатор 8 на вход аналого-цифрового преобразователя 9. Выход АЦП 9 подсоединен к блоку передачи 10, подключенному к каротажному кабелю 27. По этому же кабелю, кроме цифрового сигнала, подается напряжение питания скважинного прибора на блок питания 26.

В пятый, шестой, седьмой такты коммутатор 4 подключает датчик геоакустических сигналов 2 к усилителю 5. Устройство работает аналогично 2-4 тактам.

В восьмой, девятый, десятый такты подключается датчик геоакустических сигналов 3. Процесс работы повторяется, как в 2-4 такты.

В одиннадцатый, двенадцатый, тринадцатый такты третий коммутатор 18, управляемый блоком управления 25, подключает поочередно к ферритовой антенне 17 три различных конденсатора 19, изменяя резонансную частоту входного контура, образованного из ферритовой антенны 17 и конденсаторов 19. Одновременно с этим изменяется частота генератора 23, которая в каждый такт соответствует частоте входного контура. Усиленный блоком 20 входной сигнал и сигнал с переключаемого генератора 23 поступают на входы смесителя 21. На выходе смесителя 21 образуется сигнал в полосе частот:

(fвх±fнч)-fг ,

где fвх - частота принимаемого сигнала;

fнч - верхняя частота пропускания фильтра нижних частот 22;

fг - частота генератора 23 и входного контура 17, 19.

При этом сигнал на частоте fг будет равен нулю.

Выходной сигнал смесителя 21 через фильтр нижних частот 22 и выпрямитель 24 поступает на вход коммутатора 8, АЦП 9 и полученный цифровой сигнал через блок передачи 10 на каротажный кабель 27.

В четырнадцатый и пятнадцатый такты на входы коммутатора 8 и, далее, на АЦП 9 поступают сигналы магнитной восприимчивости с блока 15 и осевой составляющей геомагнитного поля с блока 12.

Датчик магнитной восприимчивости 11 состоит из намагничивающей катушки НК, компенсирующей катушки КК и феррозонда ФЗ. Феррозонд подключен ко входу измерительной схемы магнитометра 12. В двенадцатый и тринадцатый такты генератор 16 подает в последовательно соединенные катушки НК и КК два прямоугольных импульса тока разной полярности. Компенсирующая катушка компенсирует прямое поле намагничивающей катушки НК. После преобразования сигнала феррозонда блоком 12 в импульсные сигналы постоянного тока, характеризующие магнитную восприимчивость устройство для проведения исследований динамического состояния   горных пород в скважине, патент № 2533334 и осевую составляющую геомагнитного поля Zос , они подаются на входы аналоговых запоминающих устройств 13, 14, которые включаются один в положительный такт генератора 16, а другой в отрицательный такт генератора 16.

Напряжение на выходах блоков 13, 14 будет равно:

U+ =Zос+K·H·устройство для проведения исследований динамического состояния   горных пород в скважине, патент № 2533334

U-=Zос-K·H·устройство для проведения исследований динамического состояния   горных пород в скважине, патент № 2533334

Напряжение на выходе вычитающего усилителя 15 будет равно:

U=U++U-=2KH устройство для проведения исследований динамического состояния   горных пород в скважине, патент № 2533334 ,

где Zос - осевая составляющая геомагнитного поля;

K - коэффициент преобразования магнитного поля регистрируемого феррозондом в сигнал постоянного тока;

H - напряженность поля, создаваемого намагничивающей катушкой HK;

устройство для проведения исследований динамического состояния   горных пород в скважине, патент № 2533334 - величина магнитной восприимчивости.

Таким образом, за 15 тактов работы устройства производится регистрация и передача данных от трех датчиков геоакустических сигналов в трех диапазонах частот, электромагнитных сигналов на трех частотах, магнитной восприимчивости горных пород и осевой составляющей геомагнитного поля. Одновременное измерение комплекса сигналов трех геофизических полей в скважине позволяет получать новую информацию о геодинамическом состоянии массивов горных пород в их естественном залегании.

Источники информации

1. Фадеев В.А. Аппаратура для регистрации естественного сейсмоакустического и электромагнитного излучения горных пород в скважинах. Сб. науч. тр. Геолого-геофизические методы исследования месторождений полезных ископаемых. - Караганда, 1991, с.45-48.

2. Астраханцев Ю.Г., Троянов А.К. Устройство для проведения геоакустического каротажа. Патент РФ № 2445653, G01V 1/40.

3. Астраханцев Ю.Г., Троянов А.К. Устройство для измерения геоакустических шумов скважине. Патент РФ № 2123711, G01V 1/40.

Класс G01V11/00 Разведка или обнаружение с использованием комбинированных способов, представляющих собой сочетание двух и более способов, отнесенных к группам  1/00

способы и системы для скважинной телеметрии -  патент 2529595 (27.09.2014)
способ геофизической разведки залежей углеводородов -  патент 2527322 (27.08.2014)
способ геохимической разведки -  патент 2525644 (20.08.2014)
способ обнаружения возможности наступления катастрофических явлений -  патент 2521762 (10.07.2014)
модульная донная станция -  патент 2521218 (27.06.2014)
способ определения нефтенасыщенных пластов -  патент 2517730 (27.05.2014)
способ разработки нефтяных залежей -  патент 2513895 (20.04.2014)
способ поиска и добычи нефти -  патент 2507381 (20.02.2014)
способ и устройство для определения во время бурения насыщения водой пласта -  патент 2503981 (10.01.2014)
способ прогнозирования глубокозалегающих горизонтов на акваториях по результатам тренд-анализа магнитных и гравитационных аномалий -  патент 2501047 (10.12.2013)

Класс G01V1/40 сейсмический каротаж 

наложение форм акустических сигналов с использованием группирования по азимутальным углам и/или отклонениям каротажного зонда -  патент 2528279 (10.09.2014)
порт связи для использования на скважинном измерительном приборе -  патент 2522340 (10.07.2014)
способ дистанционного тестирования приборов акустического каротажа в полевых условиях -  патент 2521144 (27.06.2014)
скважинная геофизическая аппаратура -  патент 2520733 (27.06.2014)
способ передачи данных изображения буровой скважины и система для его осуществления -  патент 2511026 (10.04.2014)
скважинный сейсмический прибор -  патент 2503978 (10.01.2014)
способ сейсморазведки с использованием данных инклинометрии скважин -  патент 2498350 (10.11.2013)
способ скважинной сейсморазведки -  патент 2490669 (20.08.2013)
направленный стержневой пьезокерамический излучатель для устройства акустического каротажа, устройство и способ акустического каротажа -  патент 2490668 (20.08.2013)
способ сейсмического мониторинга массива горных пород, вмещающих подземное хранилище углеводородов -  патент 2478990 (10.04.2013)

Класс G01V3/18 электрический или магнитный каротаж 

устройство для измерения удельной электропроводности и электрической макроанизотропии горных пород -  патент 2528276 (10.09.2014)
способ измерения удельной электропроводности и электрической макроанизотропии горных пород -  патент 2525149 (10.08.2014)
устройство для измерений геофизических и технологических параметров в процессе бурения с электромагнитным каналом связи -  патент 2513432 (20.04.2014)
способ и устройство для определения во время бурения насыщения водой пласта -  патент 2503981 (10.01.2014)
способ оценки тока вызванной поляризации среды в заколонном пространстве обсаженных скважин -  патент 2499284 (20.11.2013)
уплотнительный узел зонда для электрического каротажа -  патент 2488851 (27.07.2013)
способ отвода паров криогенных жидкостей из криогенной системы погружного каротажного оборудования -  патент 2488147 (20.07.2013)
обработка изображения на основе объема исследования -  патент 2483333 (27.05.2013)
устройство для проведения каротажа в рудных скважинах -  патент 2456643 (20.07.2012)
способ определения формы и размеров области заводнения нефтяного пласта в окрестностях скважины -  патент 2402046 (20.10.2010)
Наверх