способ тепловых испытаний керамических обтекателей ракет

Классы МПК:G01M9/04 конструктивные элементы
G01N25/72 обнаружение локальных дефектов
Автор(ы):, , ,
Патентообладатель(и):Открытое акционерное общество "Обнинское научно-производственное предприятие "Технология" (RU)
Приоритеты:
подача заявки:
2013-07-12
публикация патента:

Изобретение относится к области тепловых испытаний и может быть использовано при наземных испытаниях элементов летательных аппаратов. Способ тепловых испытаний керамических обтекателей ракет включает нагрев и контроль температуры обтекателя в зоне узла соединения керамической оболочки со шпангоутом. Нагреву до заданной температуры подвергается металлический шпангоут изнутри обтекателя с одновременным контролем температуры шпангоута. Технический результат - повышение достоверности результатов испытаний. 1 ил. способ тепловых испытаний керамических обтекателей ракет, патент № 2531052

способ тепловых испытаний керамических обтекателей ракет, патент № 2531052

Формула изобретения

Способ тепловых испытаний керамических обтекателей ракет, включающий нагрев и контроль температуры, отличающийся тем, что в обтекателе, состоящем из керамической оболочки и внутреннего металлического шпангоута, нагреву подвергается металлический шпангоут в зоне узла соединения оболочки со шпангоутом, причем нагрев осуществляется изнутри обтекателя с одновременным контролем температуры шпангоута, а заданная температура шпангоута определяется по формуле:

способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 ,

где способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 м - температурный коэффициент линейного расширения материала металлического шпангоута; способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 к - температурный коэффициент линейного расширения керамики; TМШ - температура металлического шпангоута в зоне узла соединения при нагреве изнутри; TКШ - температура керамической оболочки в зоне узла соединения при нагреве изнутри; TМО - температура металлического шпангоута в зоне узла соединения для случая нагрева снаружи; TКО - температура керамической оболочки в зоне узла соединения для случая нагрева снаружи.

Описание изобретения к патенту

Изобретение относится к технике наземных испытаний элементов летательных аппаратов, а именно к воспроизведению тепловых режимов керамического обтекателя.

Известно, что слабым местом керамического обтекателя является узел клеевого соединения металлического шпангоута с керамической оболочкой (металлический шпангоут располагается внутри керамической оболочки). Разрушение керамической оболочки при тепловых испытаниях в большинстве случаев происходит вследствие силового взаимодействия оболочки и металлического шпангоута, обусловленного разностью температурных коэффициентов линейного расширения (ТКЛР) металла и керамики.

Наиболее широкое распространение в практике наземных тепловых испытаний получили способы, реализующие радиационный нагрев. В этих способах внешний радиационный нагрев конструкций осуществляется с помощью нагревателей, разделенных на несколько зон нагрева, а контроль температуры в этих зонах - с помощью измерительных преобразователей [Баранов А.Н., Белозеров Л.Г., Ильин Ю.С., Кутьинов В.Ф. Статические испытания на прочность сверхзвуковых самолетов. - М.: Машиностроение. - 1974. - 344 с.]. Однако радиационный нагрев имеет ряд недостатков:

- большие энергозатраты вследствие потерь тепла излучением и конвекцией в окружающую среду;

- большая погрешность воспроизведения температурного поля между зонами нагрева;

- ограничение применения методов и средств исследования напряженно-деформированного состояния (НДС) керамической оболочки в зоне узла соединения с металлическим шпангоутом вследствие расположения нагревателей с внешней стороны обтекателя.

Наиболее близким по технической сущности является способ теплового нагружения обтекателей ракет из неметаллических материалов [Патент РФ № 2456568, МПК G01M 9/04, G01N 25/72, опубл. 20.07.2011]. В этом способе нагрев обтекателя осуществляется контактным методом посредством контакта нагревателя с внешней поверхностью обтекателя, что практически исключает потерю тепла в окружающую среду. Но данный способ также не позволяет применить методы и средства исследования НДС оболочки в зоне узла соединения вследствие расположения нагревателей на внешней стороне керамической оболочки.

Технический результат заявляемого изобретения заключается в расширении возможностей применения методов и средств исследования НДС керамических обтекателей ракет в зоне узла соединения керамической оболочки и металлического шпангоута и уменьшении энергозатрат при проведении тепловых испытаний.

Указанный технический результат достигается тем, что в способе тепловых испытаний керамических обтекателей ракет, включающем нагрев и контроль температуры, в обтекателе, состоящем из керамической оболочки и внутреннего металлического шпангоута, нагреву подвергается шпангоут в зоне узла соединения с оболочкой, причем нагрев осуществляется изнутри обтекателя с одновременным контролем температуры шпангоута, а заданная температура шпангоута определяется по формуле:

способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 ,

где способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 м - температурный коэффициент линейного расширения материала металлического шпангоута; способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 к - температурный коэффициент линейного расширения керамики; TМШ - температура металлического шпангоута в зоне узла соединения при нагреве изнутри; TКШ - температура керамической оболочки в зоне узла соединения при нагреве изнутри; TМО - температура металлического шпангоута в зоне узла соединения для случая нагрева снаружи; TКО - температура керамической оболочки в зоне узла соединения для случая нагрева снаружи.

Для определения тепловой прочности конструкции обтекателя нет необходимости задавать граничные температурные условия на внешней поверхности обтекателя (нагрев снаружи для воспроизведения аэродинамического нагрева). Силовое взаимодействие между керамической оболочкой и металлическим шпангоутом может быть воспроизведено за счет нагрева узла соединения со стороны металлического шпангоута (изнутри).

В первом приближении окружные напряжения оболочки, возникающие под действием теплового расширения металлического шпангоута, можно выразить формулой:

способ тепловых испытаний керамических обтекателей ракет, патент № 2531052

где K - коэффициент пропорциональности, зависящий от механических и геометрических характеристик узла соединения; способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 м - температурный коэффициент линейного расширения материала металлического шпангоута; ТМ - текущая температура шпангоута; ТМ0 - начальная температура шпангоута; способ тепловых испытаний керамических обтекателей ракет, патент № 2531052 К - температурный коэффициент линейного расширения керамики; ТК - текущая температура керамической оболочки; ТК0 - начальная температура керамической оболочки. Для случая нестационарного нагрева в качестве температуры шпангоута или керамики необходимо принимать среднеинтегральные температуры по стенке.

Используя формулу (1), приравняем (при условии равенства окружных напряжений в оболочке) тепловое нагружение со стороны шпангоута к тепловому нагружению со стороны оболочки. В результате получим:

способ тепловых испытаний керамических обтекателей ракет, патент № 2531052

где индексы о и ш относятся соответственно к температуре при нагреве снаружи, моделирующем аэродинамический нагрев, и изнутри обтекателя.

Используя выражение (2), определяем необходимую температуру шпангоута, при которой обеспечивается равенство силового воздействия на керамическую оболочку:

способ тепловых испытаний керамических обтекателей ракет, патент № 2531052

Эта формула показывает принципиальную возможность воспроизведения силового воздействия на керамическую оболочку при нагреве со стороны внутренней полости обтекателя, идентичного нагреву снаружи.

Как видно из формулы (3), при нагреве изнутри необходимая температура шпангоута будет ниже, чем при нагреве снаружи. Кроме этого для создания необходимых окружных напряжений в оболочке отсутствует необходимость нагрева оболочки до высоких температур, как происходит при воспроизведении аэродинамического нагрева. Таким образом, для нагрева изнутри металлического шпангоута керамического обтекателя достаточно гораздо меньшей мощности.

Для расчета температуры TМШ по формуле (3) необходимо знать значения T МО, TКО, TКШ. Температуры ТМО , ТКО определяются расчетным путем на основе исходных параметров теплообмена при аэродинамическом нагреве. Значение TКШ оценивается расчетным путем и, затем, корректируется по результатам экспериментов при нагреве обтекателя изнутри.

Нагрев обтекателя посредством нагрева шпангоута изнутри предоставляет возможности для применения различных методов и средств исследования НДС (тензорезистивных, оптических, интерферометрических и пр.).

Для нагрева шпангоута могут быть использованы инфракрасные, контактные или индукционные методы нагрева.

Способ реализован следующим образом (см. чертеж). Нагреву подвергается обтекатель, состоящий из керамической оболочки 1 и металлического шпангоута 2. Нагрев обтекателя осуществляется посредством нагрева изнутри металлического шпангоута инфракрасным нагревателем 3. Температура нагрева контролируется термопарой 4. Нагрев изнутри позволяет контролировать радиальное перемещение оболочки, характеризующее ее напряженно-деформированное состояние, датчиками перемещения 5.

Предлагаемый способ расширяет возможности для исследования прочности конструкции при комбинированном воздействии тепловых факторов с другими: механическими, вибродинамическими и ударными.

Класс G01M9/04 конструктивные элементы

способ теплового нагружения обтекателей ракет из неметаллических материалов -  патент 2517790 (27.05.2014)
устройство для управления гибкими стенками сопла аэродинамической трубы -  патент 2506556 (10.02.2014)
устройство для согласования приводных рядов гибких стенок сопла аэродинамической трубы -  патент 2506555 (10.02.2014)
способ управления гибкими стенками сопла аэродинамической трубы -  патент 2506554 (10.02.2014)
способ теплового нагружения обтекателей ракет из неметаллических материалов -  патент 2456568 (20.07.2012)
устройство для имитации условий обледенения при стендовых испытаниях авиационных газотурбинных двигателей в термобарокамере с присоединенным трубопроводом -  патент 2451919 (27.05.2012)
динамический успокоитель колебаний аэродинамической модели -  патент 2375691 (10.12.2009)
способ наземных испытаний объектов авиационной техники, подвергающихся обледенению, и устройство для его осуществления -  патент 2345345 (27.01.2009)
устройство для разрыва мембраны в одноимпульсной ударной трубе -  патент 2249805 (10.04.2005)
способ определения аэродинамических характеристик транспортного средства на модели транспортного средства и устройство для определения аэродинамических характеристик транспортного средства -  патент 2075740 (20.03.1997)

Класс G01N25/72 обнаружение локальных дефектов

способ измерения теплопроводности и теплового сопротивления строительной конструкции -  патент 2527128 (27.08.2014)
способ определения степени повреждения силосного корпуса элеватора из сборного железобетона -  патент 2525313 (10.08.2014)
способ теплового контроля герметичности крупногабаритного сосуда -  патент 2520952 (27.06.2014)
способ теплового нагружения обтекателей ракет из неметаллических материалов -  патент 2517790 (27.05.2014)
способ контроля качества неразъемных соединений -  патент 2515425 (10.05.2014)
устройство определения сопротивления теплопередачи многослойной конструкции в реальных условиях эксплуатации -  патент 2512663 (10.04.2014)
способ активного одностороннего теплового контроля скрытых дефектов в твердых телах -  патент 2509300 (10.03.2014)
способ теплового контроля надежности конструкций из полимерных композиционных материалов по анализу внутренних напряжений и устройство для его осуществления -  патент 2506575 (10.02.2014)
термоэлектрический способ неразрушающего контроля качества поверхностного слоя металла -  патент 2498281 (10.11.2013)
способ управления промышленной безопасностью и диагностики эксплуатационного состояния промышленного объекта -  патент 2494434 (27.09.2013)
Наверх