способ определения массовой доли кислорода в порошках металлов

Классы МПК:G01N21/63 материал возбуждается оптическими средствами
Автор(ы):,
Патентообладатель(и):Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" - Госкорпорация "Росатом" (RU),
Федеральное государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики"-ФГУП "РФЯЦ-ВНИИЭФ" (RU)
Приоритеты:
подача заявки:
2013-04-09
публикация патента:

Изобретение относится к области аналитической химии порошковых материалов, в частности к способам определения массовой доли кислорода в порошках металлов методом атомно-эмиссионной спектроскопии. Способ заключается в подготовке пробы, получении атомно-эмиссионных спектров, идентификации кислорода по спектральной эмиссионной линии с длиной волны 777,19 нм. В качестве источника возбуждения атомно-эмиссионного спектра используют частотный двухимпульсный лазер на основе алюмоиттриевого граната, активированного неодимом, с длиной волны 1064 нм, с задержкой между импульсами, равной 5-10 мкс. Подготовку пробы осуществляют прессованием исследуемого материала с последующей обработкой поверхности образца лазером. При использовании изобретения суммарная относительная погрешность определения массовой доли кислорода в порошках металлов не превышает 15 масс.%; диапазон определения массовой доли кислорода в порошках металлов составляет от 0,1 до 10 масс.%. 3 пр., 1 табл.

Формула изобретения

Способ определения массовой доли кислорода в порошках металлов методом атомно-эмиссионной спектроскопии, заключающийся в подготовке пробы, получении атомно-эмиссионных спектров, идентификации кислорода по спектральной эмиссионной линии с длиной волны 777,19 нм, отличающийся тем, что в качестве источника возбуждения атомно-эмиссионного спектра используют частотный двухимпульсный лазер на основе алюмоиттриевого граната, активированного неодимом, с длиной волны 1064 нм, с задержкой между импульсами, равной 5-10 мкс, а подготовку пробы осуществляют прессованием исследуемого материала с последующей обработкой поверхности образца лазером.

Описание изобретения к патенту

Изобретение относится к области аналитической химии порошковых материалов, в частности к способам определения массовой доли кислорода в порошках металлов.

Кислород является одной из основных примесей, попадающих в порошки металлов в процессе их производства, обработки и эксплуатации. Присутствие этой примеси может оказывать сильное влияние на некоторые физико-химические свойства порошков металлов, в результате чего они могут становиться непригодными для дальнейшего использования. Поэтому одной из важнейших задач при производстве порошков металлов является контроль за содержанием в них примеси кислорода.

Известным способом определения кислорода в порошках металлов является метод восстановительного плавления (вакуум-нагрев) (Методы определения и исследования газов в металлах (Доклады на II Всесоюзном симпозиуме по методам анализа газов в металлах). - М.: Наука, 1968, с.142-146; ГОСТ. 9853.5-96; Титан губчатый. Методы определения кислорода. - Минск: Совет по стандартизации, метрологии и сертификации. 2000, с.4-5). В основе метода лежит плавление металла в вакууме или инертной среде в присутствии графита с образованием оксидов углерода и последующим их определением методом газовой хроматографии или с применением ПК-спектроскопии.

Недостатком данного способа является то, что он требует больших энергетических затрат и использования дорогостоящих расходных материалов, в результате чего анализ с применением данного способа становится дорогим.

В качестве прототипа выбран способ определения массовой доли кислорода в порошкообразных материалах спектральным методом (Методы определения и исследования газов в металлах (Доклады на II Всесоюзном симпозиуме по методам анализа газов в металлах). - М.: Наука, 1968, с.146-151). Способ заключается в получении атомно-эмиссионных спектров токопроводящих образцов с помощью низковольтного импульсного разряда, идентификации кислорода по спектральной эмиссионной линии с длиной волны 777,19 нм.

К недостаткам способа-прототипа можно отнести сложности (а иногда и невозможности) анализа сильноокисленных порошков металла в силу их слабой электропроводности.

Задачей настоящего изобретения является расширение функциональных возможностей способа определения массовой доли кислорода в порошках металлов с применением атомно-эмиссионной спектроскопии.

При использовании заявленного способа достигается следующий технический результат:

- суммарная относительная погрешность определения массовой доли кислорода в порошках металлов не превышает 15 масс.%;

- диапазон определения массовой доли кислорода в порошках металлов составляет от 0,1 до 10 масс.%.

- возможность определения массовой доли кислорода как в электропроводящих, так и в неэлектропроводящих порошках.

Для решения поставленной задачи и достижения технического результата предложен способ определения массовой доли кислорода в порошках металлов методом атомно-эмиссионной спектроскопии, заключающийся в подготовке пробы, получении атомно-эмиссионных спектров, идентификации кислорода по спектральной эмиссионной линии с длиной волны 777,19 нм, в котором согласно изобретению в качестве источника возбуждения атомно-эмиссионного спектра используют частотный двухимпульсный лазер на основе алюмоиттриевого граната, активированного неодимом, с длиной волны 1064 нм, с задержкой между двумя параллельными импульсами, равной 7 мкс, а подготовку пробы осуществляют прессованием исследуемого материала с последующей обработкой поверхности образца импульсами лазера.

Количественный атомно-эмиссионный спектральный анализ основан на том, что интенсивность I аналитических линий атомов, как правило, монотонно возрастает с увеличением массового содержания определяемого элемента в пробе. Однако рассчитать связь между интенсивностью I линии и концентрацией С элемента в образце практически невозможно. Поэтому, в большинстве случаев, эту зависимость устанавливают опытным путем, используя стандартные образцы.

Измеряя интенсивности линий в спектрах стандартных образцов в тех же условиях, в которых исследуют анализируемые пробы, можно получить для ряда значений концентраций соответствующие им значения интенсивностей. Строя по полученным значениям кривую, получают зависимость - градуировочный график, по которому графически определяют массовую долю элемента в образце.

Из этого следует, что спектральный анализ является сравнительным методом анализа, результаты которого могут быть достоверны лишь в том случае, если применяемые эталоны являются адекватными и достоверными.

Преимущество двухимпульсного частотного лазера на основе алюмоиттриевого граната, активированного неодимом с длиной волны 1064 нм и задержкой между импульсами равной, 5-10 мкс, который применяется в заявленном способе, в сравнении с одноимпульсным заключается в выигрыше в соотношении «сигнал/шум» при регистрации спектра, также в снижении порога обнаружения кислорода, что уменьшает случайную составляющую погрешности.

Замена искрового источника возбуждения на лазерный позволяет расширить границы применения атомно-эмиссионной спектроскопии для определения массового содержания кислорода в порошках.

Для достоверного определения содержания кислорода в анализируемом предварительно прессованном порошке проводят обработку его поверхности с целью удаления поверхностных оксидов соответствующего металла. Эффективно осуществить такую операцию позволяет обработка поверхности лазером, которую проводят непосредственно перед анализом образца.

Пример 1

Анализ осуществляют в потоке аргона, чистота которого не ниже 99,99 объемных %. Допустимое избыточное давление аргона в рабочей камере не выше 0,5 атм.

Для осуществления способа определения массовой доли кислорода в порошках металлов применяли твердотельный частотный двухимпульсный алюмоиттриевый гранат, активированный неодимом, с длиной волны генерируемого излучения 1064 нм и средней энергией импульса 120 мДж. Количественное определение кислорода проводили по спектральной идентификационной линии кислорода с длиной волны 777,19 нм.

Навеску порошка титана марки ПТОМ-2 прессовали на воздухе в таблетки диаметром 12 мм до плотности 3,1-3,2 г/см3, помещали в специальный контейнер для транспортировки к месту проведения анализа.

Прессованный образец устанавливают на столик рабочей камеры и настраивают фокусировку лазерного излучения таким образом, чтобы диаметр эрозионного пятна на образце составлял 0,6±0,2 мм. Использовали частотный двухимпульсный лазер с задержкой между импульсами, равной 7 мкс, что является оптимальным значением при определения массовой доли кислорода в порошках металлов.

Перед заполнением аргоном рабочей камеры осуществляют ее откачку до давления ~50 мм рт.ст.(в течение ~2 мин) с использованием собственной откачной системы анализатора. С помощью газового редуктора устанавливают необходимое избыточное давление аргона в рабочей камере (0,1<Pраб<0,5 атм) и начинают проводить анализ.

Специально разработанная аналитическая программа осуществляет очистку поверхности несколькими предварительными лазерными импульсами (10-20 импульсов), после чего начинается регистрация атомно-эмиссионных спектров. Обработка спектров может осуществляться как вручную по ранее определенной градуировочной зависимости, так и с использованием аналитической программы, позволяющей автоматизировать определение массовой доли кислорода в порошках металлов.

Определение массовой доли кислорода в порошках меди и алюминия проводили по способу, описанному выше.

В таблице представлены результаты определения массовой доли кислорода в порошках металлов с применением заявленного способа и с использованием метода восстановительного плавления.

Таблица

Результаты определения массовой доли кислорода в порошках металлов
Основа порошка металла Массовая доля кислорода в порошке металла с применением заявленного способа, масс.%Массовая доля кислорода в порошке металла с применением метода восстановительного плавления, масс.%
Титан 0,180,22
Медь2,632,50
Алюминий7,59 8,02

Результаты содержания примеси кислорода в исследуемых материалах, полученные с использованием заявленного способа, хорошо сходятся с результатами, полученными с применением метода восстановительного плавления, который осуществлялся на анализаторе ELTRA ONH-2000.

Необходимо отметить, что настоящий способ может быть применим для определения массовой доли кислорода в смесях порошков металлов, однако для достоверного проведения такого анализа необходимы эталонные стандартные образцы, аналогичные по химическому составу с анализируемыми смесями.

Класс G01N21/63 материал возбуждается оптическими средствами

способ измерения концентрации кислорода в газовых смесях -  патент 2523756 (20.07.2014)
способ оптического мониторинга поверхности в области воздействия лазерного излучения и устройство для его осуществления -  патент 2520944 (27.06.2014)
люминесцентный способ определения самария -  патент 2514190 (27.04.2014)
люминесцентный способ определения тербия -  патент 2506569 (10.02.2014)
способ измерения в режиме реального времени толщины пленки не содержащего хром покрытия на поверхности полосовой стали -  патент 2498215 (10.11.2013)
способ контроля степени сшивки полиэтилена -  патент 2492451 (10.09.2013)
измерительное устройство для определения по меньшей мере одного параметра пробы крови -  патент 2468355 (27.11.2012)
способ определения профиля распределения концентрации носителей заряда в полупроводниковой квантово-размерной структуре -  патент 2464548 (20.10.2012)
устройство для контроля примесей в сточных водах -  патент 2460993 (10.09.2012)
способ измерения яркостной и цветовой температуры поверхности в области воздействия лазерного излучения и устройство для его осуществления -  патент 2460992 (10.09.2012)
Наверх