ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

способ непрямого капнометрического определения анаэробного порога физической работоспособности человека

Классы МПК:A61B5/00 Измерение для диагностических целей
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Государственный научный центр Российской Федерации-Институт медико-биологических проблем Российской академии наук (ГНЦ РФ-ИМБП РАН) (RU)
Приоритеты:
подача заявки:
2013-09-13
публикация патента:

Изобретение относится к области медицины, а именно к спортивной, подводной и авиакосмической физиологии. Предварительно строят модель зависимости индекса Кердо и соответствующего ему потребления кислорода при разных уровнях физической нагрузки. Впоследствии количество потребления кислорода человеком на уровне аэробно-анаэробного перехода определяют на основании измеренного индекса Кердо, значения мощности нагрузки, количества выдыхаемого диоксида углерода и данных, полученных на этапе построения модели. Способ позволяет определить анаэробный порог физической работоспособности человека на основании измерения дозированной велоэргометрической нагрузки, индекса Кердо и капнометрии. 1 ил., 2 пр.

Рисунки к патенту РФ 2527848

способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848

Изобретение относится к области математической биологии, а именно к спортивной, подводной и авиакосмической физиологии. Предлагаемая методика может быть использована как в спортивных и оздоровительных целях (например, при подготовке спортсменов), так и в целях подготовки и контроля персонала (экипажа), длительное время изолированно пребывающего по роду практической деятельности в условиях подводных и авиакосмических исследований, а также связанных с деятельностью человека, находящегося в экстремальных условиях.

Знание анаэробного порога (АП) человека является одним из важных инструментов оценки физической работоспособности [Попов Д.В., Виноградова О.Л., Григорьев А.И. Аэробная работоспособность человека. М.: Наука, 2012; Аулик И.В. Определение физической работоспособности в клинике и спорте. М.: Медицина. 1979. с.54; Респираторная медицина: в 2 т. / под ред. А.Г. Чучалина. М.: ГЭОТАР-Медиа. 2007. T.1. с.394; Wasserman K., Hansen J.E., Sue D.Y., Stringer W.W., Whipp B.J., Casaburi R. Principles of exercise testing and interpretation. 2 ed. Lea&Febiger. 1994. Р.27], а также исследования жизнедеятельности экипажей гермообъектов [Олизаров В.В. Системы обеспечения жизнедеятельности экипажей летательных аппаратов. Под ред. В.А. Боднера. М.: Издание ВВИА им. Н.Е. Жуковского, 1962. С.10]. Колебания изменений работоспособности во время длительной изоляции в гермообъекте зависят от режима сна-бодрствования, режима физических тренировок, а также внутренних физиологических ритмов вегетативной нервной системы (суточных, синодических, сезонных) испытателя.

Известны разные респираторные и биохимические методы оценки АП работоспособности [Wasserman K., Hansen J.E., Sue D.Y., Stringer W.W., Sietsema K., Sun X.G., Whipp B.J. Principles of exercise testing and interpretation: including pathophysiology and clinical applications. 5 ed. Lippincott Wiliams&Wilkins. 2012 - прототип]. Однако применение известных методов подразумевает либо частое взятие крови для определения в ней лактата, либо обязательное наличие оксиметрической газоаналитической аппаратуры, калибровочного оборудования к ней, замену комплектующих, например кислородных полярографических датчиков, имеющих ограниченный срок службы. В свою очередь, калибровочное оборудование включает наличие сосудов под высоким давлением, использование которых согласно содержанию требований норм к безопасности может быть недопустимо в условиях барокамер и других гермообъектов, включая космические летательные аппараты (КЛА). Кроме того, даже простая транспортировка баллонов с калибровочными газами под высоким давлением в труднодоступные места, например, в околоземное пространство, сопряжена с высоким риском и является дорогостоящей.

Изобретенный нами метод определения анаэробного порога (вентиляторного порога 1) человека полностью исключает необходимость в транспортировке оксиметрического оборудования в космос и другие труднодоступные места и обходится использованием капнометрической аппаратуры и данных мониторинга, доступных из медконтроля показателей гемодинамики (ЧСС и АД). Высокая временная стабильность характеристик современных инфракрасных капнометрических датчиков исключает необходимость частой калибровки эталонными газами в эксплуатации [Зислин Б.Д., Чистяков А.В. Мониторинг дыхания и гемодинамики при критических состояниях. Екатеринбург: Сократ. 2006. С.115; Шурыгин И.А. Мониторинг дыхания: пульсоксиметрия, капнография, оксиметрия. СПб.: Невский Диалект; М.: Издательство БИНОМ, 2000. С.102].

Известно также, что косвенные результаты измерений могут быть не менее точными, чем результаты прямых измерений. Такой подход в естествознании известен и описан [Бурмистров Г.А. Основы способа наименьших квадратов. М.: Государственное научно-техническое издательство литературы по геологии и охране недр. 1963. С.119-208; Агекян Т.А. Теория вероятностей для астрономов и физиков. Учебное пособие. М.: Наука. 1974. С.197; Мазмишвили А.И. Способ наименьших квадратов. М.: Недра. 1968. С.180-231], применяется в физиологии [Elwyn D.H., Askanazi J., Kinney J.M., Bursztein S. Energy Metabolism, Indirect Calorimetry, and Nutrition. Williams&Wilkins. 1989. 266 p.].

Поэтому, одним из перспективных направлений является изучение взаимосвязи физиологических параметров оптимального функционирования членов экипажей пилотируемых объектов [Шибанов Г.П. Обитаемость космоса и безопасность пребывания в нем человека. М.: Машиностроение. 2007. 544 с.; Ханин М.А., Дорфман Н.Л., Бухаров И.Б. и др. Экстремальные принципы в биологии и физиологии. М.: Наука. 1978. 256 с].

Задачей предлагаемого изобретения является разработка нового способа адекватной оценки анаэробного порога работоспособности без применения дорогостоящей оксиметрической газоаналитической аппаратуры на основании измерения физиологической характеристики вегетативной нервной системы [Кердо И. Индекс, вычисляемый на основе параметров кровообращения для оценки вегетативного тонуса. // Спортивна медицина (Украина). 2009. № 1-2. С.33-43] и капнометрии при дозированной физической работе.

Достигаемым техническим результатом является определение анаэробного порога, отражающего состояние физической работоспособности человека на основании измерения мощности нагрузки, дозированной велоэргометром, индекса Кердо и минутного выделения диоксида углерода.

Способ осуществляется следующим образом.

1. Строят модель связи вегетативного индекса Кердо и количества потребления кислорода (в литрах в минуту).

Для чего выполняют измерение индекса Кердо и соответствующего ему потребления кислорода при разных уровнях физической нагрузки: 0, 60, 75, 90 Вт и т.д. вплоть до субмаксимального потребления кислорода.

В качестве модели зависимости нами найдена зависимость:

способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848

где z - детерминированное, то есть заведомо задаваемое на измерительном устройстве (например, велоэргометре) значение мощности нагрузки, x - измеряемое значение вегетативного индекса Кердо, y - отклик организма в виде количества потребляемого кислорода (л/мин), a1, a2 , a0 - коэффициенты, значения которых находятся для конкретного испытуемого в лабораторных условиях методом наименьших квадратов.

Пример 1. Для испытателя К. уравнение связи в виде линейной функции двух переменных имеет вид:

способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848

На фиг.1 представлена трехмерная графическая интерпретация модели (1.2) для испытателя К. Видна наиболее удобная для восприятия точка обзора. По оси абсцисс и ординат соответственно - индекс Кердо и потребление кислорода. По оси аппликат - нагрузка (Вт). Значения коэффициентов a1=23.06, a 2=82.7, a0=-28.2 найдены методом наименьших квадратов.

Модель (1.2) является индивидуальной характеристикой организма испытателя К. Для других испытателей с помощью лабораторных экспериментов с использованием метода наименьших квадратов нужно найти их индивидуальные значения характеристик a1, a2, a0 .

2. Зная индивидуальную модель испытателя, в случаях, в которых оксиметрическое определение анаэробного порога невозможно или связано со значительными материальными затратами, анаэробный порог работоспособности достигается при выполнении равенства:

способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848

где значения коэффициентов a 1, a2, a0 определены на этапе построения модели (см. п.1), k - минутный объем выдыхаемого диоксида углерода (л/мин), измеряемый на каждой ступени нагрузки z; x - соответствующее значение индекса Кердо. На каждой ступени вычисляется правая часть выражения (1.3) и сравнивается с измеряемым численным значением k.

В случае способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848 физическая работа выполняется при аэробном энергообеспечении.

В случае способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848 анаэробный порог работоспособности преодолен, то есть уже включились анаэробные механизмы и работа выполняется при аэробно-анаэробном энергообеспечении.

В случае выполнения равенства (1.3) значение k численно совпадает с минутным объемом потребления кислорода испытуемого на уровне аэробно-анаэробного перехода.

Метод расчета значения АП применим как в случае максимальных, так и в случае субмаксимальных нагрузочных тестов.

С помощью многомерного критерия Фишера-Снедекора нами в 2011-2012 гг. выполнена проверка адекватности метода на 36 практически здоровых испытуемых в ходе фоновых исследований экспериментов ГНЦ Института медико-биологических проблем РАН «Марс-500», «Гелий-11», «Аргон-11», «Аргон-12» и «Климат», одобренных Биоэтической комиссией института.

В результате проверки установлено, что вероятность ошибки метода близка к нулю (способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848 10-21). Нами установлено, что среди испытателей экспериментов наибольшее зарегистрированное значение анаэробного порога составило 4 л/мин.

В результате численной апробации моделей в экспериментах «Марс-500», «Гелий-11», «Аргон-11», «Аргон-12», «Климат» установлено, что разработанная методика является достаточно точной для решения задач оценки физической работоспособности с целью прогнозирования мощности работы, которую сможет выполнить впоследствии космонавт.

Пример 2. Из измерений на велоэргометре во время ступенчато возрастающей нагрузки известно, что у испытателя эксперимента «Гелий-11» К. при значении нагрузки 180 Вт значение индекса Кердо составило +0.36, выделение диоксида углерода при этом составило 2.1 л/мин, а при значении нагрузки 315 Вт значение индекса Кердо составило +0.52, выделение диоксида углерода составило 3.9 л/мин.

Определяем: В первом случае способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848

и анаэробный порог еще не достигнут, а во втором случае способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848

анаэробный порог достигается, иначе говоря, вентиляторный порог 1 достигнут испытателем К. при нагрузке 315 Вт на уровне потребления кислорода 4 л/мин.

Вместе с тем известно, что в результате прямых оксиметрических измерений данный испытатель при нагрузке 180 Вт и индексе Кердо +0.36 потреблял кислорода 2.40 л/мин, а при нагрузке 315 Вт потреблял кислорода 4.08 л/мин. То есть, предсказанное с помощью модели значение 4.0 л/мин, найденное уже без выполнения измерений оксиметрической газоаналитической аппаратурой количества потребляемого кислорода на уровне анаэробного порога, не отличается от зарегистрированного инструментально результата значения 4.08, найденного с применением оксиметрической аппаратуры.

Вывод. Зная модель (1.1) с найденными методом наименьших квадратов значениями коэффициентов a1, a2, a0 для данного испытателя, определение анаэробного порога с помощью измерения потребления кислорода можно не выполнять, а предсказать заранее достаточно точно по индексу Кердо и результатам капнометрии. Этим методом можно воспользоваться, например, на борту КЛА, где оксиметрическое определение анаэробного порога работоспособности сопряжено с определенными техническими и экономическими трудностями. Кроме того, на борту КЛА всегда имеется штатная капнометрическая аппаратура, предназначенная для мониторирования атмосферы гермообъекта, которая потенциально может быть использована для целей респираторной капнометрии.

Наш способ позволит индивидуально косвенно оценивать работоспособность испытателей (в том числе на борту МКС) без применения оксиметрической газоаналитической аппаратуры, но с применением капнометрической аппаратуры при измерении стандартных при медицинском контроле показателей гемодинамики.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ определения анаэробного порога физической работоспособности человека при дозированной физической работе, заключающийся в том, что предварительно измеряют индекс Кердо и соответствующее ему потребление кислорода при разных уровнях физической нагрузки, на основании модели связи вегетативного индекса Кердо и количества потребления кислорода, в литрах в минуту: z=a1·x+a 2·y+a0, где z - задаваемое на измерительном устройстве значение мощности нагрузки, x - измеряемое значение вегетативного индекса Кердо, y - отклик организма в виде количества потребляемого кислорода, л/мин, определяют значения коэффициентов: a1, a2, a0; впоследствии без определения количества потребления кислорода человеком определяют для очередной ступени мощности возрастающей нагрузки анаэробный порог физической работоспособности на основании выполнения равенства способ непрямого капнометрического определения анаэробного порога   физической работоспособности человека, патент № 2527848 , где k - минутный объем выдыхаемого диоксида углерода при постоянном значении нагрузки; z, x - соответствующие значения индекса Кердо; a1, a2, a0 - коэффициенты, значения которых предварительно определены.


Скачать патент РФ Официальная публикация
патента РФ № 2527848

patent-2527848.pdf
Патентный поиск по классам МПК-8:

Класс A61B5/00 Измерение для диагностических целей

Патенты РФ в классе A61B5/00:
устройство для контроля состояния здоровья -  патент 2529808 (27.09.2014)
способ профилактики профессиональной потери слуха -  патент 2529700 (27.09.2014)
способ прогнозирования эффективности лечения у больных с гипертензионно-гидроцефальным синдромом после перенесенной легкой боевой черепно-мозговой травмы без психопатологической симптоматики -  патент 2529698 (27.09.2014)
способ диагностики увеличения щитовидной железы у мужчин и женщин -  патент 2529630 (27.09.2014)
способ прогнозирования ухудшения клинического течения идиопатической саркомы капоши, перехода хронической формы в подострую, затем в острую форму заболевания -  патент 2529628 (27.09.2014)
способ оценки восприятия информации -  патент 2529482 (27.09.2014)
система получения изображений с кардио-и/или дыхательной синхронизацией и способ 2-мерной визуализации в реальном времени с дополнением виртуальными анатомическими структурами во время процедур интервенционной абляции или установки кардиостимулятора -  патент 2529481 (27.09.2014)
устройство и способ для сбора данных с лица и языка -  патент 2529479 (27.09.2014)
способ подготовки полиграфолога -  патент 2529418 (27.09.2014)
способ дистанционной регистрации и обработки электрокардиограммы и дыхания человека и животных -  патент 2529406 (27.09.2014)


Наверх