способ обеззараживания воды

Классы МПК:C02F1/50 добавлением или применением бактерицидных средств или олигодинамической обработкой
C02F1/72 окислением
A01N59/16 тяжелые металлы; их соединения
Автор(ы):, , ,
Патентообладатель(и):Покшин Василий Васильевич (RU),
Перелыгин Юрий Петрович (RU)
Приоритеты:
подача заявки:
2012-11-09
публикация патента:

Изобретение относится к комплексной обработке воды окислителем персульфатом натрия и ионами тяжелых металлов, в частности серебра, меди, цинка, и может быть использовано для обеззараживания оборотной воды бассейнов и доочистки сточных вод предприятий. Способ обеззараживания воды включает ее обработку окислителем и ионами меди и серебра, полученными при растворении их солей, после чего воду выдерживают в течение 0,5-2 часов. Дополнительно применяют ионы цинка. В качестве окислителя используют 0,2-0,4% водный раствор персульфата натрия, который вводят в воду одновременно с растворами солей меди, серебра и цинка до достижения их концентраций в воде: персульфата натрия 1-5 мг/л; ионов серебра 0,02-0,05 мг/л; ионов меди 0,07-1,0 мг/л; ионов цинка 3,0-5,0 мг/л. Обработку воды проводят при температуре 10-25 оС. Изобретение позволяет обеспечить обеззараживание воды и предотвратить повторное бактериальное заражение воды в течение длительного времени. 1 табл., 3 пр.

Настоящее изобретение относится к способам комплексной обработки воды окислителем персульфатом натрия и ионами тяжелых металлов, в частности серебра, меди, цинка. Оно может быть использовано для дезинфекции и обеззараживания оборотной воды бассейнов и для доочистки сточных вод предприятий.

Наиболее распространенным способом обеззараживания воды является ее хлорирование [Фрог Б.Н., Левченко А.П. Водоподготовка. М.: Издательство МГУ, 2003. 680 с.]. Для усиления антимикробного действия хлорирование сочетают с использованием других реагентов, таких как ионы меди, серебра или цинка (US 5858246, C02F 1/50, 1999). Однако этот метод имеет ряд ограничений, связанных с ухудшением вкуса воды, появлением неприятного запаха и образованием значительного количества побочных продуктов, содержащих хлор, некоторые из которых канцерогенны.

Более перспективным является замена хлорирования воды на озонирование, что обусловлено, в первую очередь, его высокими окислительными свойствами и способностью эффективно разрушать различные неорганические и органические соединения, а также патогенные микроорганизмы, в том числе стойкие к действию других окислителей, например хлора. При озонировании воды у нее исчезают неприятный вкус и запах, повышается прозрачность и возрастает содержание растворенного кислорода. Разложение остаточного озона протекает быстро с выделением кислорода без образования токсичных соединений.

Однако наряду с перечисленными выше достоинствами метод обработки озоном имеет существенный недостаток - вода может подвергнуться вторичному бактериальному заражению, поскольку уже через два часа после обработки концентрация озона в ней приближается к нулю, а также необходимостью производства озона на станции очистки воды.

Известен способ обеззараживания воды плавательных бассейнов, предусматривающий ее периодическую обработку диизодецил-диметиламмоний хлоридом и ионами меди, получаемыми при растворении ее солей, с последующим введением окислителя - хлора или озона и поддержание постоянной концентрации последнего не менее 0,1 мг/л (US 5332511, C02F 1/50, 1994).

Известен способ обеззараживания воды путем ее обработки озоном и ионами меди, причем обработку ведут в несколько стадий, при этом на первой стадии в воду вводят озон до его концентрации в воде 0,5-1 мг/л, на второй стадии озонированную воду выдерживают в течение 0,5-2 ч, после чего на третьей стадии воду обрабатывают ионами меди при концентрации 0,05-0,8 мг/л, полученными с использованием электролизера, анод и катод которого выполнены из рафинированной меди, а полярность электродов меняют через 5-10 мин (пат. 2182123 РФ, МКИ C02F 1/50).

Известен способ обеззараживания воды, включающий ее обработку озоном и ионами серебра, причем обработку ведут в несколько стадий, при этом на первой стадии в воду вводят озон до его концентрации в воде 0,5-1,0 мг/л, на второй стадии озонированную воду выдерживают в течение 0,5-2,0 ч, после чего на третьей стадии воду обрабатывают ионами серебра при концентрации 0,005-0,01 мг/л, полученными с использованием электролизера, анод и катод которого содержат не менее 99 мас.% серебра, а полярность электродов периодически изменяют. Предпочтительно озонирование необходимо вести при температуре воды 10-20°C, а электролиз - при 20-30°C и pH 6,5-8,5 (пат. 2182124 РФ, МКИ C02P 1/50, 1/78).

Из известных наиболее близким по технической сущности является способ обеззараживания воды, включающий ее обработку окислителем с последующим введением ионов серебра и меди, полученных при растворении их солей, причем в качестве окислителя используют озон, который вводят в воду в количестве 0,5-1 мг/л, затем воду выдерживают в течение 0,5-2 ч и при помощи по крайней мере одного устройства дозирования вводят раствор соли серебра до достижения концентрации ионов Ag+ в воде, равной 0,005-0,01 мг/л, после чего вводят раствор соли меди до достижения концентрации Cu2+, равной 0,05-0,5 мг/л (пат. 2182125 РФ, МКИ C02F 1/50).

Недостатком данного способа является необходимость производства озона на станции очистки воды, и поскольку уже через два часа после обработки воды концентрация озона в ней приближается к нулю, то вода может подвергнуться вторичному бактериальному заражению.

Задачей, на решение которой направлено заявляемое изобретение, является разработка эффективного, экологически безопасного и экономически дешевого способа обеззараживания воды с одновременной олигодинамической обработкой ионами металлов и окислителя, позволяющего обеспечить обеззараживание воды и предотвратить вторичное бактериальное заражения воды в течение длительного времени.

Это достигается тем, что в способе обеззараживания воды, включающем ее обработку ионами серебра и меди, полученных при растворении их солей, после чего воду выдерживают течение 0,5-2 часов, согласно предлагаемому изобретению дополнительно применяются ионы цинка, а в качестве окислителя применяют 0,2-0,4% водный раствор персульфата натрия, который вводят одновременно с растворами солей серебра, меди и цинка до достижения их концентрации в воде: персульфат натрия 1-5 мг/л; ионов серебра 0,02-0,05, ионов меди 0,07-1,0 и ионов цинка 3,0-5,0 мг/л, при этом обработку воды проводят при температуре 10-25°C.

Способ осуществляется следующим образом.

Вначале готовят водные растворы персульфата натрия (0,2-0,4% раствор), нитрата серебра и сульфата меди и цинка (2-5% растворы).

Затем в обеззараживаемую воду одновременно при перемешивании добавляют растворы персульфата натрия до его концентрации 1-5 мг/л, нитрата серебра и сульфата меди и цинка до концентраций ионов серебра, меди и цинка 0,02-0,05, 0,07-1,0 и 3,0-5,0 мг/л соответственно.

После чего обеззараживаемую воду выдерживают в течение 0,5-2 часов при температуре 10-25°C.

Пример 1. Для проверки бактерицидного действия указанного способа осуществлялась обработка воды из поверхностного источника водоснабжения. В исходную воду добавляли 0,2% раствор персульфата натрия до его концентрации 1 мг/л и 2% растворы нитрата серебра и сульфата меди и цинка до концентраций ионов серебра, меди и цинка 0,02; 0,07 и 3,0 мг/л соответственно.

На второй стадии обработанную воду выдерживают в течение 2,0 часов при температуре 25°C.

Пример 2. Для проверки бактерицидного действия указанного способа осуществлялась обработка воды из поверхностного источника водоснабжения. В исходную воду добавляли 0,3% раствор персульфата натрия до его концентрации 3 мг/л и 3% растворы нитрата серебра и сульфата меди и цинка до концентраций ионов серебра, меди и цинка 0,03; 0,5 и 4,0 мг/л соответственно.

На второй стадии обработанную воду выдерживают в течение 1,0 часа при температуре 15°C.

Пример 3. Для проверки бактерицидного действия указанного способа осуществлялась обработка воды из поверхностного источника водоснабжения. В исходную воду добавляли 0,4% раствор персульфата натрия до его концентрации 5 мг/л и 4% растворы нитрата серебра и сульфата меди и цинка до концентраций ионов серебра, меди и цинка 0,05; 1,0 и 5,0 мг/л соответственно.

На второй стадии обработанную воду выдерживают в течение 0,5 часа при температуре 10°C.

Исследование результатов проводилось в испытательном лабораторном центре ФБУЗ «Центр гигиены и эпидемиологии в Пензенской области».

В таблице приведены некоторые показатели качества воды до и спустя 0,5; 1; 2 часа и через 30 дней после ее обработки по предлагаемому способу.

Дата отбора пробы Место отбора пробыКоличество введенного реагентаСодержание загрязняющих веществ до очистки Температура воды, °C Содержание загрязняющих веществ после очистки
Через 0,5 часаЧерез 1 час Через 2 часаЧерез 30 дней открытого хранения
3.07.2012 Река СураNa2S 2O8 до концентрации 1 мг/л, [Ag+] до концентрации 0,02 мг/л, [Cu+2] до концентрации 0,07 мг/л, [Zn+2] до концентрации 3,0 мг/л Термотолерантные колиформные бактерии, КОЕ в 100 мл: 2,6·10 3251 способ обеззараживания воды, патент № 2524944 Отсутствие Отсутствие
Общие колиформные бактерии, КОЕ в 100 мл: 2,6·103 251способ обеззараживания воды, патент № 2524944 Отсутствие Отсутствие
20.12.2013 Na2S2O 8 до концентрации 3 мг/л, [Ag+] до концентрации 0,03 мг/л, [Cu+2] до концентрации 0,5 мг/л, [Zn +2] до концентрации 4,0 мг/лТермотолерантные колиформные бактерии, КОЕ в 100 мл: 3,2·103 15способ обеззараживания воды, патент № 2524944 Отсутствие способ обеззараживания воды, патент № 2524944 Отсутствие
Общие колиформные бактерии, КОЕ в 100 мл: 3,2·103 15способ обеззараживания воды, патент № 2524944 Отсутствие способ обеззараживания воды, патент № 2524944 Отсутствие
20.12.2013Na2S 2O8 до концентрации 5 мг/л, [Ag+] до концентрации 0,05 мг/л, [Cu+2] до концентрации 1,0 мг/л, [Zn+2] до концентрации 5,0 мг/л Термотолерантные колиформные бактерии, КОЕ в 100 мл: 3,2·10 310Отсутствие способ обеззараживания воды, патент № 2524944 способ обеззараживания воды, патент № 2524944 Отсутствие
Общие колиформные бактерии, КОЕ в 100 мл: 3,2·103 10Отсутствие способ обеззараживания воды, патент № 2524944 способ обеззараживания воды, патент № 2524944 Отсутствие

Как видно из таблицы, в исходной воде были обнаружены термотолерантные колиформные бактерии КОЕ и общие колиформные бактерии КОЕ. После обработки воды по предлагаемому способу содержание термотолерантных колиформных бактерий (КОЕ в 100 мл) и общих колиформных бактерий (КОЕ в 100 мл) значительно меньше установленных ПДК для воды хозяйственно-питьевого водоснабжения соответственно способ обеззараживания воды, патент № 2524944 100 и способ обеззараживания воды, патент № 2524944 500 [СанПиН 2.1.5.980-00 Гигиенические требования к охране поверхностных вод] и соответствуют требованиям для воды централизованных систем питьевого водоснабжения [СанПиН 2.1.4.1074-01 "Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества"] и для воды плавательных бассейнов [«Плавательные бассейны. Гигиенические требования к устройству, эксплуатации и качеству воды. Контроль качества. СанПиН 2.1.2.1188-03»].

Из таблицы также видно, что в обеззараженной воде при открытом хранении в течение одного месяца не происходит вторичное ее бактериальное заражение.

Таким образом, представленные данные свидетельствуют о высоком качестве обработанной воды, проведенной данным способом, а предложенный способ обеззараживания воды является эффективным, относительно простым и доступным.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ обеззараживания воды, включающий ее обработку окислителем и ионами меди и серебра, полученными при растворении их солей, после чего воду выдерживают в течение 0,5-2 часов, отличающийся тем, что дополнительно применяются ионы цинка, а в качестве окислителя применяют 0,2-0,4% водный раствор персульфата натрия, который вводят в воду одновременно с растворами солей меди, серебра и цинка до достижения их концентраций в воде:

персульфата натрия 1-5 мг/л;

ионов серебра 0,02-0,05 мг/л;

ионов меди 0,07-1,0 мг/л;

ионов цинка 3,0-5,0 мг/л,

при этом обработку воды проводят при температуре 10-25°C.


Скачать патент РФ Официальная публикация
патента РФ № 2524944

patent-2524944.pdf
Патентный поиск по классам МПК-8:

Класс C02F1/50 добавлением или применением бактерицидных средств или олигодинамической обработкой

Патенты РФ в классе C02F1/50:
способ консервации водных препаратов минеральных веществ, консервированные водные препараты минеральных веществ и применение консервирующих соединений в водных препаратах минеральных веществ -  патент 2529816 (27.09.2014)
способ противодействия биологическому загрязнению текучих сред, используемых для обработки подземных скважин -  патент 2527779 (10.09.2014)
стабилизированная биоцидная композиция -  патент 2522137 (10.07.2014)
способ обеззараживания воды и оценки его эффективности -  патент 2520857 (27.06.2014)
способ дообработки питьевой воды -  патент 2510887 (10.04.2014)
способ инактивации вирусов в водных средах -  патент 2506232 (10.02.2014)
способ утилизации продувочной воды циркуляционной системы -  патент 2502683 (27.12.2013)
состав для дезинфекции воды -  патент 2501741 (20.12.2013)
дезинфицирующее средство для обеззараживания воды -  патент 2499771 (27.11.2013)
синергетическая противомикробная композиция -  патент 2499387 (27.11.2013)

Класс C02F1/72 окислением

Патенты РФ в классе C02F1/72:
установка безреагентной очистки и обеззараживания воды -  патент 2524601 (27.07.2014)
способ очистки природной воды -  патент 2514963 (10.05.2014)
способ очистки воды -  патент 2502682 (27.12.2013)
способ разрушения аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в отходах производства -  патент 2500629 (10.12.2013)
способ обезвреживания отходов, содержащих углеводороды, с одновременным осаждением растворенных солей металлов и устройство для его осуществления -  патент 2485400 (20.06.2013)
способ глубокой очистки сточных вод от красителей -  патент 2480424 (27.04.2013)
способ очистки сточных вод от фенолов -  патент 2476384 (27.02.2013)
способ получения гранулы покрытого окисляющего вещества, полученная гранула и ее применение -  патент 2471848 (10.01.2013)
способ каталитического окисления аниона 1-гидроксиэтан-1,1-дифосфоновой кислоты в водном растворе -  патент 2460693 (10.09.2012)
способ очистки цианидсодержащих вод -  патент 2450979 (20.05.2012)

Класс A01N59/16 тяжелые металлы; их соединения

Патенты РФ в классе A01N59/16:
конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
использование жидкой минеральной композиции для улучшения адаптивной реакции растений на изменение условий окружающей среды -  патент 2519233 (10.06.2014)
синергетическая композиция глифосата и птц -  патент 2503179 (10.01.2014)
концентрат для получения дезинфектанта, способы его получения и применение -  патент 2498572 (20.11.2013)
синергетическая комбинация глифосата и ипбк -  патент 2495570 (20.10.2013)
биоцидная композиция -  патент 2494622 (10.10.2013)
антимикробные полимерные изделия, способы их получения и способы их применения -  патент 2476072 (27.02.2013)
способ получения композиционного бактерицидного препарата -  патент 2474121 (10.02.2013)
вещество, обладающее антимикробным действием -  патент 2473366 (27.01.2013)
средство для вегетационной обработки растений подсолнечника -  патент 2468581 (10.12.2012)


Наверх