способ определения концентрации элемента в веществе сложного химического состава

Классы МПК:G01N23/20 с помощью дифракции, например для исследования структуры кристаллов; с помощью отраженного излучения 
Автор(ы):, , , ,
Патентообладатель(и):федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный минерально-сырьевой университет "Горный" (RU)
Приоритеты:
подача заявки:
2013-04-11
публикация патента:

Использование: для определения концентрации элемента в веществе сложного химического состава. Сущность изобретения заключается в том, что выполняют облучение пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, при этом установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения. Технический результат: обеспечение возможности определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона. 9 ил. способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454

способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454

Формула изобретения

Способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения, отличающийся тем, что установление концентрации определяемого элемента проводят по аналитическому параметру, учитывающему влияние фона характеристического излучения, вида:

способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454

(Zi - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии Ei; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i ; I(Enc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(E nc) - рассчитанная интенсивность фона некогерентно рассеянного излучения),

где интенсивность фона характеристического излучения по всему диапазону энергий в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента рассчитывают по формуле:

способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454

(Emin,i - значение энергии края поглощения аналитической линии i-го элемента, способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 E - разрешающая способность детектора спектрометра, I Emin,i+способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 E - интенсивность характеристического излучения в точке спектра с энергией Emin,i+способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 E).

Описание изобретения к патенту

Изобретение относится к способу определения концентрации элемента (элементов), основанному на измерении характеристического рентгеновского излучения в веществах сложного химического и фазового состава, имеющих различную структуру и плотность.

Изобретение относится к методам неразрушающего контроля элементного состава вещества и реализуется в методах волнового и энергодисперсионного рентгенофлуоресцентного анализа.

Флуоресцентная эмиссия рентгеновских лучей является одним из наиболее мощных средств обнаружения и количественного определения элементов практически в любом фазовом состоянии сложного вещественного состава [Юинг Г. Инструментальные методы химического анализа. М.: Мир, 1989, 608 с.]. Учитывая, что структура и плотность матрицы влияет на интенсивность характеристической линии элемента, для определения концентрации элемента в образце сложного химического и фазового состава необходим набор стандартных образцов, имеющих фазовую структуру, идентичную структуре анализируемого образца, что не всегда технически и аналитически выполнимо.

Известен способ определения тяжелых металлов в породах и рудах по их характеристическому рентгеновскому излучению, возбуждаемому гамма-квантами рентгеновской трубки или другого источника излучения. Для уточнения влияния плотности матрицы, сокращения количества измерений и упрощения методики их проведения в условиях естественного залегания пород и руд производят одновременное измерение интенсивностей вторичного излучения в двух участках спектра, расположенных по разные стороны от К (L)-края поглощения искомого элемента (SU 171482, опубл. 26.05.1965).

Содержание искомого элемента находят по величине отношения интенсивностей в двух указанных участках спектра вторичного излучения. С целью определения нескольких элементов производят одновременное измерение интенсивностей вторичного излучения в участках спектра, расположенных по разные стороны от К (L)-краев поглощения каждого элемента. Недостатком указанного способа является нелинейная зависимость интенсивности вторичного рентгеновского излучения от концентрации элемента, что снижает точность анализа, а следовательно, недостаточно достоверная информация об анализируемом веществе.

Известен способ определения концентрации элемента и кристаллической фазы, куда входит определяемый элемент, в веществе сложного химического состава, включающий облучение пробы анализируемого вещества монохроматическим рентгеновским излучением, регистрацию интенсивности когерентно рассеянного определяемой кристаллической фазой первичного излучения. В способе предусматривается одновременная или последовательная регистрация интенсивности когерентно рассеянного излучения с интенсивностью некогерентного рассеянного первичного излучения этой же пробой, а затем по отношению указанных интенсивностей устанавливается концентрация определяемой фазы (RU 2255328, опубл. 27.06.2005).

Данный способ объединяет два направления: рентгеноспектральный и рентгенофазовый анализ. В рентгеноспектральном анализе определяется концентрация того или иного элемента, в рентгенофазовом анализе определяется концентрация той или иной фазы. Для реализации метода использовалось совершенно разное оборудование, основанное на разных физических принципах - рентгеновские спектрометры для рентгеноспектрального анализа и рентгеновские дифрактометры для рентгенофазового анализа. Способ позволяет снизить влияние химического и фазового состава пробы на ошибку измерения, однако не позволяет получить точную информацию о количестве анализируемого элемента, входящего в определяемую фазу.

Известен способ определения концентраций элемента и фазы, включающей данный элемент, в веществе сложного химического состава (патент RU 2362149, опубл. 20.07.2009 г.), выбран в качестве прототипа, описывающий способ определения концентрации элемента и фазы в веществах сложного химического состава. Отличительной особенностью способа является то, что одновременно регистрируют интенсивность характеристического излучения определяемого элемента, его определяемой фазы и интенсивность когерентно и некогерентно рассеянного (по Комптону) излучений, а затем по отношению указанных интенсивностей определяют концентрации элемента и фазы, включающей данный элемент, что позволяет учитывать влияние вещественного состава на результаты анализа (матричный эффект). Предлагаемый способ основывается на методе спектральных отношений при рентгенофлуоресцентном анализе и разработанном автором способе определения концентрации фазы при рентгенофазовом анализе.

Автор утверждает, что отношение интенсивности аналитической линии Ii к интенсивности некогерентно рассеянному излучению Inc не зависит от матрицы пробы и может использоваться как аналитический параметр Ki способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 . Однако метод, принятый в качестве прототипа, не учитывает влияние фона характеристического излучения, возникающего вследствие облучения пробы первичным потоком гамма-квантов, что вносит существенную погрешность в нахождение концентраций определяемых элементов [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.148, 208 с.].

Интенсивность фона, зависящая от структуры и состава пробы, пропорциональна интенсивности характеристического излучения, возбуждаемого первичным потоком рентгеновского излучения трубки или другого источника. В то же время интенсивность фона некогерентно рассеянного излучения пропорциональна интенсивности некогерентно рассеянных квантов первичного излучения с соответствующей энергией (длиной волны), зависящей от материала анода рентгеновской трубки [Лосев Н.Ф., Смагунова А.Н. Основы рентгеноспектрального флуоресцентного анализа. М.: Химия, 1982, с.140, с.147, с.149, 208 с.].

Влияние фона можно не учитывать только в том случае, когда химический и фазовый состав анализируемых материалов является постоянным. Если же состав проб изменяется, то при их анализе интенсивность фона для каждого образца следует измерять рядом с аналитической линией, что является трудоемкой операцией и не всегда возможно в силу конволюции спектров характеристического излучения.

Техническим результатом настоящего изобретения является возможность определения концентрации элементов в пробах различного химического и вещественного состава, имеющих различную структуру и плотность, без идентификации фазового состава, но с предварительной коррекцией фона.

Технический результат достигается тем, что способ определения концентраций элемента в веществе сложного химического и фазового состава путем облучения пробы анализируемого вещества монохроматическим гамма- или рентгеновским излучением с одновременной регистрацией интенсивностей характеристического излучения и некогерентно рассеянного этой же пробой первичного излучения проводят по аналитическому параметру вида способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 , учитывающему влияние фона характеристического излучения, что позволяет привести к линейной зависимости измеряемых величин интенсивности характеристического излучения от концентрации каждого определяемого элемента в пробе сложного химического и фазового состава и тем самым значительно повысить точность анализа.

В формуле расчета аналитического параметра Z i для i-го элемента приняты следующие обозначения: Z i - аналитический параметр для элемента i; Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента; I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии E i; Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i; I(E nc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc ) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Нормирование скорректированной интенсивности аналитической линии к интенсивности некогерентно рассеянного излучения не зависит от матрицы пробы (вещественного состава, плотности и фазового состояния) и используется как аналитический параметр.

Для определения аналитических параметров в заявляемом способе проводят следующие операции:

1. Измеряют спектр характеристического излучения по всему диапазону энергий (длин волн), соответствующих аналитическим линиям содержащихся в пробе элементов одновременно с интенсивностью некогерентно рассеянного излучения.

2. По измеренному спектру рассчитывают интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента Emin,i, по формуле:

способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 ,

где Iфона(Ei ) - интенсивность фона в каждой точке спектра, кратной значению энергии края поглощения аналитической линии i-го элемента E min,i, Ei - значение энергии возбуждаемого уровня характеристического излучения i-го элемента, Emin,i - значение энергии края поглощения аналитической линии i-го элемента, способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 E - разрешающая способность детектора спектрометра, I Emin,i+способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 E - интенсивность характеристического излучения в точке спектра с энергией Emin,i+способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 E.

3. По рассчитанной в п.2 интенсивности фона определяют скорректированную интенсивность для каждого i-го элемента по формуле:

Ji=(I(Ei )-Iфона(Ei))2,

где Ji - скорректированная интенсивность аналитической линии элемента i, I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии E i, Iфона(Ei) - рассчитанная интенсивность фона в каждой точке спектра, кратной энергии Emin,i для i-го элемента.

4. По отношению интенсивностей аналитических линий элемента и некогерентно рассеянного излучения с учетом интенсивности фона рассчитывают аналитический параметр Zi для элемента i

способ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454

где I(Ei) - измеренная интенсивность характеристического излучения, соответствующая энергии E i, Iфона(Ei) - рассчитанная интенсивность фона, кратная энергии Emin,i для i-го элемента, I(E nc) - измеренная интенсивность, соответствующая энергии некогерентно рассеянного излучения, Iфона(Enc ) - рассчитанная интенсивность фона некогерентно рассеянного излучения.

Используя вместо измеряемых величин интенсивности характеристического излучения аналитический параметр Zi, получаем линейную зависимость аналитического параметра Zi от содержания i-го элемента в пробе:

Zi=aiCi+bi,

где ai и bi - коэффициенты пропорциональности, определяемые методом наименьших квадратов при построении калибровочных зависимостей для i-го элемента, Ci - концентрация элемента i в пробе.

Таким образом, вместо уравнения, связывающего интенсивность характеристического излучения i-го элемента с его концентрацией, используется зависимость аналитического параметра Zi от концентрации i-го элемента, что позволяет получить предельную линейную зависимость, устраняя влияние других элементов, входящих в пробу вещества сложного состава.

На фиг.1 приведена зависимость интенсивности I линии La элемента церия от его концентрации в растворе, на фиг.2 - линейная зависимость аналитического параметра Z для тех же образцов.

На фиг.2 видно, что введение параметра Z позволяет провести линеаризацию зависимости измеряемых величин от концентрации, что существенно повышает точность рентгенофлуоресцентного анализа.

На фиг.3 приведены зависимости интенсивности некогерентно рассеянного излучения от концентрации Ce в растворах и в твердой фазе (порошки). Изменение интенсивности некогерентно рассеянного излучения в растворах и порошках учитывается эквивалентным выражением, что показывает возможность учета влияния матрицы для проб различной структуры.

Техническая реализация предлагаемого способа осуществима на энергодисперсионных спектрометрах и спектрометрах с волновой дисперсией. При этом в качестве регистрирующего устройства могут использоваться полупроводниковые детекторы, кристаллы-сцинтилляторы, газоразрядные трубки и pin-диоды.

Сущность заявляемого изобретения и его преимущества могут быть пояснены следующими примерами конкретного выполнения.

Пример 1. Количественное определение фосфата церия в концентрате фосфатов редкоземельных элементов. Используемое оборудование: энергодисперсионный рентгеновский спектрометр РЕАН; условия измерения - Uycк - 40 кВ, Iанод - 100 мкА; материал анода - Мо; время экспозиции - 100 с; среда измерения - воздух; детектор некогерентно рассеянного излучения Si-pin-диод (16,57 кэВ).

Приготовлен массив градуировочных проб разбавлением химически чистого CePO 4 продуктом моноаммонийфосфата (МАФ) дигидратного сернокислотного производства фосфорной кислоты с диапазоном концентраций по церию: 0,1-11,0%, 11-53,6%.

Объект анализа - гомогенизированный порошок разбавленного фосфата церия, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм, искомый элемент-аналит - церий. Полученные зависимости интенсивности Lспособ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 линии церия от концентрации элемента (%) и интенсивности некогерентно рассеянного излучения от концентрации Ce (%) представлены фиг.4 и 5.

Введение аналитического параметра Z i с учетом интенсивности фона для Lспособ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 линии церия позволяет получить линейные зависимости как для низких, так и для высоких концентраций данного элемента, представленные на фиг.6.

Пример 2. Количественное определение редкоземельных элементов (РЗЭ) в модельных смесях. Используемое оборудование: рентгеновский спектрометр «Спектроскан G»; условия измерения - Uуск - 40 кВ, Iанод - 100 мкА; материал анода - Ag; время экспозиции - 5 с; среда измерения - воздух; (16,57 кэВ); длина волны некогерентного рассеяния - 605 mÅ.

Приготовлен массив градуировочных проб разбавлением химически чистых нитратов РЗЭ продуктом МАФ. Объект анализа - гомогенизированный порошок разбавленных нитратов РЗЭ, спрессованный в таблетки диаметром 15 мм под давлением 20 т/см2, толщина образцов - более 2 мм. Элементы-аналиты - La, Er, Eu с диапазоном концентраций по лантану: 0,04-3%; по эрбию: 0,03-1%; по европию: 0,1-4%.

Использование аналитического параметра Zi с учетом интенсивности фона позволяет получить линейные зависимости для каждого элемента-аналита: лантана, эрбия и европия, от их концентрации в совместном присутствии. Полученные линейные зависимости аналитического параметра Z i от концентрации для характеристических линий Lспособ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 La, Lспособ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 Er и Lспособ определения концентрации элемента в веществе сложного   химического состава, патент № 2524454 Eu представлены на фиг.7, 8, 9.

Изобретение может быть использовано в различных отраслях промышленности для решения следующих задач:

- определение элементного состава руд, минералов, промышленных и товарных продуктов горнодобывающей промышленности;

- определение элементного состава природных и сточных вод, промышленных технологических растворов;

- исследование продуктов лабораторного и промышленного синтеза неорганических структур.

Скачать патент РФ Официальная публикация
патента РФ № 2524454

patent-2524454.pdf

Класс G01N23/20 с помощью дифракции, например для исследования структуры кристаллов; с помощью отраженного излучения 

способ определения термостойкости изделий из сверхтвердой керамики на основе кубического нитрида бора -  патент 2522762 (20.07.2014)
способ контроля и управления непрерывной термообработкой -  патент 2518039 (10.06.2014)
способ рентгенометрической оценки температурных условий эксплуатации трубных элементов котлов -  патент 2509298 (10.03.2014)
способ рентгеноструктурного контроля детали -  патент 2488099 (20.07.2013)
фосфат лития-железа со структурой оливина и способ его анализа -  патент 2484009 (10.06.2013)
способ и устройство для регистрации кривых дифракционного отражения -  патент 2466384 (10.11.2012)
рентгенодифракционный способ идентификации партий фармацевтической продукции -  патент 2452939 (10.06.2012)
прибор для рентгеновского анализа -  патент 2450261 (10.05.2012)
рентгеновская установка для формирования изображения исследуемого объекта и ее применение -  патент 2449729 (10.05.2012)
способ контроля дефектности и упругой деформации в слоях полупроводниковых гетероструктур -  патент 2436076 (10.12.2011)
Наверх