способ восстановления чувствительного слоя биосенсора

Классы МПК:C12N9/14 гидролазы (3)
C12N1/14 микробные грибки; питательные среды для них
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Научно-исследовательский институт биомедицинской химии имени В.Н. Ореховича" Российской академии медицинских наук (ФГБУ "ИБМХ" РАМН) (RU)
Приоритеты:
подача заявки:
2012-10-16
публикация патента:

Изобретение относится к биотехнологии. Способ предусматривает обработку чувствительного слоя биосенсора раствором общей фракции протеаз гепатопанкреаса камчатского краба в буфере состава трис-НСl 50 мМ, СаСl2 3 мМ, NaCl 100 мМ, рН 8,0 при температуре раствора в диапазоне 35-40°С. Процесс ведут в несколько последовательных стадий раствором общей фракции протеаз гепатопанкреаса камчатского краба в указанном растворителе при температуре в диапазоне 35-40°С с последующей экспозицией. Затем чувствительный слой биосенсора последовательно промывают додецилсульфатом, растворенным в том же буфере в концентрации 0,1%, а затем водой на каждой стадии. При этом процесс обработки проводят трижды. Изобретение позволяет сократить продолжительность процесса. 1 з.п. ф-лы.

Формула изобретения

1. Способ восстановления чувствительного слоя биосенсора путем обработки его раствором фермента, отличающийся тем, что в качестве раствора фермента используют раствор общей фракции протеаз гепатопанкреаса камчатского краба в буфере состава трис-HCl 50 мМ , CaCl 2 3 мМ, NaCl 100 мМ, рН 8,0 при температуре раствора в диапазоне 35-40°С, и процесс ведут в несколько последовательных стадий путем обработки чувствительного слоя биосенсора раствором общей фракции протеаз гепатопанкреаса камчатского краба в указанном растворителе при температуре в диапазоне 35-40 °С с последующей экспозицией и последовательной промывкой чувствительного слоя додецилсульфатом, растворенным в том же буфере в концентрации 0,1 %, а затем водой на каждой стадии.

2. Способ по п.1, отличающийся тем, что цикл обработки проводят трижды.

Описание изобретения к патенту

Изобретение относится к области биосенсорного анализа и касается способа восстановления чувствительного слоя биосенсора.

Чипы биосенсоров являются продуктом высоких технологий, что приводит к тому, что незаводское их изготовление невозможно. В то же время они являются принципиально одноразовыми изделиями, повторного использования которых не предусматривается, хотя стоимость чипа достаточно высока, и расходы на один анализ могут быть весьма значительными. Во многих случаях это не является препятствием для использования биосенсоров, поскольку при выполнении жизненно важных анализов или при разработке новых лекарств цена анализа не является определяющим фактором. В то же время существуют исследования, для выполнения которых нужно потратить десятки и даже сотни чипов. Во многих случаях это невозможно по экономическим причинам.

В подавляющем большинстве случаев, если иммобилизированным компонентом при изучении взаимодействия является белок или полипептид, то его иммобилизация на чип производится пользователем. С завода чипы выпускаются без иммобилизированной компоненты, а только подготовленными для иммобилизации. Это связано с тем, что белок и полипептиды, иммобилизованные на поверхности чипа хуже хранятся, чем отдельно чипы и пришиваемые компоненты, для которых раздельно можно обеспечить оптимальные условия хранения для каждого.

Иммобилизированный компонент должен прочно удерживаться на поверхности чипа. В противном случае, если этот компонент смывается с чипа, наблюдается сильный дрейф, мешающий измерениям. Кроме того, потеря иммобилизированного компонента приводит к непрерывному снижению чувствительности биосенсора. Поэтому обычно для иммобилизации используют необратимую пришивку, приводящую к образованию ковалентной связи между подложкой чипа и иммобилизированной молекулой. Чаще всего применяется иммобилизизация за аминогруппу на карбоксиметилированную декстрановую подложку, активированную смесью EDC/NHS (1-ethyl-3-(3-dimethylaminopropyl)carbodiimideN-hydroxysuccinimide). Кроме того, возможна фиксация макромолекул за карбоксильную группу, за сульфгидрильную группу и т.п. Применение любого из этих способов приводит к необратимой фиксации макромолекул, после которой они остаются на поверхности чипа и не могут быть смыты с нее детергентами, растворителями и прочими моющими агентами. Поэтому, со временем, после деградации иммобилизированного компонента использованный чип уже не пригоден для любого дальнейшего применения. В то же время подложка такого чипа вполне пригодна для иммобилизации других макромолекул, однако использовать ее для повторной иммобилизации в большинстве случаев не удается, поскольку часть мест (обычно карбоксильных групп) иммобилизации дезактивирована или занята в результате предыдущей посадки, а оставшиеся от предыдущей иммобилизации молекулы могут дать непредсказуемые артефакты и ошибки измерения.

Чтобы привести использованный чип в состояние, близкое к тому, в котором он поступает с завода-изготовителя, необходимо по возможности более полно устранить с его поверхности остатки ранее иммобилизованных макромолекул и, при необходимости, восстановить до исходного значения поверхностную плотность карбоксильных групп. На настоящий момент не существует способа прицельно разорвать ковалентную связь, образовавшуюся в процессе иммобилизации, однако есть возможность удалить все элементы пришитой макромолекулы кроме того, который непосредственно пришит к подложке.

Для этого можно привести поверхность чипа в контакт с раствором фермента, способного гидролизовать связи между компонентами макромолекул. Для протеинов и белков следует использовать протеазы, а для нуклеиновых кислот - нуклеазы - РНКзы и ДНКзы [1, 2, 5].

Имеется большой выбор протеолитических ферментов, но не все они подходят для проведения регенерации [3], так как большинство протеаз разрезают пептидную связь только по определенным аминокислотам, которые, кроме того, должны быть доступны для воздействия фермента, то есть находиться снаружи белковой глобулы. Такие протеазы не способны полностью гидролизовать пришитые белки. Всегда остаются участки, которые не содержат нужных аминокислот, и которые не будут гидролизованы и удалены. Кроме того, даже если белковая молекула будет разрезана в нескольких местах, отрезанные куски не отделятся от глобулы, поскольку белковая цепочка в глобуле сильно переплетена сама с собой, и отрезанные куски не могут покинуть глобулу.

Существуют ферменты, способные отрезать от белковой цепочки аминокислоту за аминокислотой с С или N конца (это разные ферменты - соответственно С-пептидазы и N-пептидазы), которые в принципе могут гидролизовать весь белок без остатка. Однако такие ферменты все равно не решают проблему по нескольким причинам. Есть белки в которых С-конец, или N-конец или оба спрятаны внутри глобулы [3].

Такие белки неуязвимы для соответствующего типа концевых протеаз или для обоих типов сразу. Поскольку в большинстве случаев иммобилизация белковой глобулы происходит не за конец цепи, а за какое либо внутреннее звено, для полной очистки чувствительной поверхности биосенсора необходимо присутствие в регенерирующем растворе обоих типов концевых протеаз. В то же время сами эти протеазы обычно устойчивы к своему собственному воздействию, но уязвимы для протеаз другого типа. И, наконец, это довольно дорогие белки, не всегда доступные для приобретения. В то же время удельная активность таких ферментов обычно невысокая, и для эффективного удаления белков за приемлемое время их нужно применять в большом количестве.

Известен способ регенерации оптических элементов биосенсора путем гидролиза иммобилизованного протеина с помощью раствора протеолитического фермента Проназа Е. Раствор указанного фермента с концентрацией 1 мг/мл готовился на буферном растворе состава - 20 мМ фосфата натрия, 150 мМ хлористого натрия, рН 7,2.

Чип помещали в раствор примерно на 15-17 часов при комнатной температуре. После этого его промывали в дистиллированной воде. Был получен удовлетворительный уровень восстановления свойств чипа, однако основным недостатком описанного метода является большой расход протеолитического фермента, его высокая стоимость (http://www.sigmaaldrich.com/life-science/biochemicals/biochemical-products.html?TablePage=16410626) и отсутствие в России производства этого препарата. В связи с этим, стоимость восстановления работоспособности оптического чипа по данному методу получается слишком высокой [4].

В соответствии с изобретением описывается способ восстановления чувствительного слоя биосенсора путем многостадийной обработки его раствором общей фракции протеаз гепатопанкреаса камчатского краба в буферном растворе состава трис-HCl 50 мМ, CaCl2 3 мМ, NaCl 100 мМ, Рн 8,0 при температуре раствора 35-40 С° с последующей экспозицией и последовательной промывкой чувствительного слоя сначала додецилсульфатом и затем водой после каждой стадии.

Общая фракция протеаз из гепатопанкреаса камчатского краба представляет собой весьма эффективный набор ферментов, предназначенный и высоко адаптированный для разрушения и превращения в олигопептиды и одиночные аминокислоты любых белковых молекул. Эта смесь способна гидролизовать любые белки вне зависимости от их первичной и вторичной структуры, с весьма высокой скоростью и при температуре от +2°С и выше. Эти свойства обусловлены условиями обитания и физиологией камчатского краба и оптимизированы за миллионы лет эволюции. Общая фракция протеаз является побочным результатом при переработке камчатского краба в пищевые продукты, поэтому стоимость ее не высока [7].

Согласно литературным данным [6], оптимальными условиями для хранения и действия ферментного препарата коллагеназы краба являются следующие: для хранения - фосфат калия 100 мМ, цитрат калия 50 мМ (рН 4,8); а для работы трис-HCl 50 мМ, CaCl2 3 мМ, NaCl 100 мМ, (рН 8,0). Наилучшая активность препарата достигается при температуре 35-40°С.

Задачей изобретения является разработка способа восстановления чувствительного слоя биосенсора.

Непосредственно процедура регенерации чувствительного слоя биосенсора производится следующим образом.

Использованный чип биосенсора освобождают от защитной оболочки, если она имеется. Затем чип помещают в герметически закрываемый контейнер минимального объема, достаточного, чтобы чип уместился в нем целиком. Готовят раствор общей фракции протеаз гепетопанкреаса камчатского краба в буферном растворе состава трис-HCl 50 мМ, CaCl2 3 мМ, NaCl 100 мМ (рН 8,0). Температуру раствора поддерживают в диапазоне 35-40°С. Для этого навеску сухого лиофилизированного препарата растворяют до концентрации 0,1-0,01 мг/мл. Меньшие значения приводят к увеличению длительности процедуры, а большие к перерасходу препарата. Полученный раствор заливают в контейнер с помещенным в него чипом так, чтобы чувствительная поверхность чипа была полностью покрыта полученным раствором, и крышку контейнера герметически закрывают. Контейнер помещают в термостат при температуре 35-40°С. Через 24 часа экспозиции чип извлекают из контейнера с раствором протеаз и промывают в растворе додецилсульфата натрия в течение одного часа, затем 5 минут в проточной дистиллированной воде и опять помещают в раствор протеаз. Такой цикл повторяют три раза, после чего чип промывают один час в проточной дистиллированной воде. Таким образом, общая длительность восстановления чипа составляет около 76 часов. Раствор протеаз гепатопанкреаса камчатского краба сохраняет пригодность для работы в течение одного месяца с момента растворения при условии хранения при температуре не выше 8°С [6, 7].

После окончательной промывки оптические поверхности чипа продувают очищенным сжатым воздухом для удаления пылевых загрязнений, возвращают чип в защитную оболочку и помещают в пластиковый пакет для хранения. Для оценки качества восстановления чип помещают в биосенсор и убеждаются в том, что положения линий сенсограмм соответствуют по положению линиям, характерным для интактного декстрана или приближается к таковому. Для оценки количества карбоксильных групп проводят контроль преконцентрации какого либо эталонного липида. Если скорость преконцентрации липида заметно снижена, можно восстановить количество карбоксильных групп следующей процедурой:

Вся процедура регенерации чувствительной поверхности может производиться непосредственно в биосенсоре, поскольку применяемые растворы (раствор протеаз, раствор додецилсульфата и вода) не вызывают коррозии и не разрушают пластики, или проводиться отдельно, во вспомогательных пробирках или специально приспособленных емкостях. При проведении регенерации вне прибора снимаются ограничения на длительность операций и снижаются требования к удельной активности комплекса протеаз. Длительность процедур при этом можно доводить до нескольких суток без ущерба для производительности.

Экспериментальная проверка показала, что общая фракция протеаз гепатопанкреаса камчатского краба быстро и эффективно удаляет с чувствительной поверхности чипа биосенсора более 99% ранее иммобилизированного белка. При этом на освобожденный от результатов предыдущей посадки чип можно посадить новую порцию белка в количестве не менее 90% от того, который садится на новый чип.Дополнительного увеличения числа карбоксильных групп на декстране чипа не понадобилось.

Используемая в описываемом способе общая фракция протеаз гепатопанкреаса камчатского краба имеет высокую протеолитическую активность и низкую цену, поскольку производится в большом количестве как побочный продукт пищевой промышленности.

СПИСОК ЛИТЕРАТУРЫ

1. Патент RU № 2027181.

2. maxXbond: Первая система регенерации для переплетенных ДНК-колонок https://www.applichem.com/ru/o-produktakh/maxxbond-pervaja-sistema-regeneracii-dnk-kolonok/.

3. Handbook of Proteolytic Enzymes / Eds Barrett A.J., Rawlings N.D., Woessner J.F. London: Acad. Press, 1998.

4. Ronald С. Chatelier, Thomas R. Gengenbach, Hans J. Griesser, Michael Brigham-Burke, t and Daniel J. O'Shannessyt'(1995). A General Method to Recondition and Reuse BIAcore Sensor Chips Fouled with Covalently Immobilized Protein/Peptide. ANALYTICAL BIOCHEMISTRY 229, 112-118.

5. Патент RU № 2239827.

6. ТУ 2639-001-45554109-98. Препарат ферментный коллагеназа из гидробионтов.

7. Патент RU № 2280076.

Класс C12N9/14 гидролазы (3)

штамм бактерий serratia species, являющийся продуцентом внеклеточной рибонуклеазы и дезоксирибонуклеазы, обладающих противовирусной активностью -  патент 2528064 (10.09.2014)
разжиженная биомасса, способ ее получения, ее применение и способ ее сбраживания -  патент 2521514 (27.06.2014)
способ идентификации улучшенных вариантов белка -  патент 2520808 (27.06.2014)
способ обработки лигноцеллюлозного материала -  патент 2518305 (10.06.2014)
способ выделения эндонуклеазы из яда кобры -  патент 2515924 (20.05.2014)
способ получения глоботриозы -  патент 2514661 (27.04.2014)
способ использования рибонуклеазы bacillus intermedius -  патент 2509801 (20.03.2014)
рекомбинантный штамм дрожжей yarrowia lipolytica - продуцент фитазы -  патент 2504579 (20.01.2014)
штамм escherichia coli - продуцент гидролазы эфиров альфа-аминокислот из xanthomonas rubrilineans и способ микробиологического синтеза гидролазы эфиров альфа-аминокислот на основе этого штамма -  патент 2502797 (27.12.2013)
способ комплексной переработки рыбного сырья для получения гиалуроновой кислоты и коллагена -  патент 2501812 (20.12.2013)

Класс C12N1/14 микробные грибки; питательные среды для них

ранозаживляющее средство на основе штамма trichoderma harzianum rifai -  патент 2528065 (10.09.2014)
ингибитор андийского вируса крапчатости картофеля -  патент 2527899 (10.09.2014)
питательная среда для выращивания мицелиальных грибов-дерматомицетов из клинического материала -  патент 2527074 (27.08.2014)
способ получения противовирусного средства и противовирусное средство -  патент 2522880 (20.07.2014)
штамм мицелиального гриба aspergillus oryzae-продуцент мальтогенной альфа-амилазы -  патент 2514224 (27.04.2014)
штамм fusarium sambucinum - продуцент грибной белковой биомассы -  патент 2511427 (10.04.2014)
способ получения грибной белковой биомассы -  патент 2511041 (10.04.2014)
мутантный штамм glarea lozoyensis и его применение -  патент 2507252 (20.02.2014)
способ обнаружения микроскопических грибов рода coccidioides poasadasii 36 s и coccidioides immitis c-5 -  патент 2503715 (10.01.2014)
способ получения кератиназы из penicillium citrinum -  патент 2499833 (27.11.2013)
Наверх