способ внутреннего азотирования ферритной коррозионно-стойкой стали

Классы МПК:C23C8/26 стальных поверхностей
C23C8/80 последующая обработка
Автор(ы):, , , , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Приоритеты:
подача заявки:
2012-10-10
публикация патента:

Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к азотированию сталей в газовой среде, и может быть использовано для упрочнения стальных деталей, работающих при относительно высоких температурах 500-700 0С, в том числе в коррозионной среде. Высокотемпературному внутреннему азотированию подвергают изделия толщиной до 2 мм из ферритной стали, содержащей углерод до 0,2 вес.%, хром 12-25 вес.% и титан 0,5-3 вес.%. Азотирование проводят при температуре 1000-1200°С в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе. Затем проводят отжиг при температуре 500-900°С в бескислородной среде в течение 1-5 часов с охлаждением с печью. Обеспечивается повышение прочности и жаропрочности сталей, работающих при температуре до 700°С, и упрощение процесса азотирования и термообработки. 1 пр., 1 табл.

Формула изобретения

Способ высокотемпературного внутреннего азотирования изделий толщиной до 2 мм из ферритной стали, содержащей углерод в количестве до 0,2 вес.%, хром в количестве 12-25 вес.%, титан в количестве 0,5-3 вес.%, отличающийся тем, что азотирование ведут при температуре 1000-1200°С в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе, далее проводят отжиг при температуре 500-900°С в бескислородной среде в течение 1-5 часов с охлаждением с печью.

Описание изобретения к патенту

Изобретение относится к области металлургии, а именно к химико-термической обработке, в частности к азотированию сталей в газовой среде, и может быть использовано для упрочнения стальных деталей, работающих при относительно высоких температурах (500-700°С), в том числе в коррозионной среде.

Известны способы низкотемпературного азотирования сталей, при которых процесс азотирования ведут при температурах Т=500-600°С. Однако такое азотирование в основном используется для повышения свойств поверхности деталей, поскольку в процессе его проведения на поверхности образуется слой соединений (нитридов), обладающий повышенными эксплуатационными характеристиками (Ю.М.Лахтин, Б.Н.Арзамасов. Химико-термическая обработка металлов, М.: Металлургия, 1985, с.141). При этом повышаются такие свойства поверхности как твердость и износостойкость, однако данные способы не позволяют получить эффект упрочнения по всему объему изделия.

Азотирование при высокой температуре позволяет существенно сократить время самого процесса азотирования, поскольку при более высокой температуре возрастает диффузионная подвижность элементов (Ю.М.Лахтин, Б.Н.Арзамасов. Химико-термическая обработка металлов, М.: Металлургия, 1985, с.141). Кроме этого, азотирование при высокой температуре (в том числе в комбинации с термической обработкой) позволяет получать не только слой с выделениями нитридов на поверхности, но и получать достаточно глубокие слои с выделениями нитридов. Для тонколистовых изделий такое азотирование по сути является сквозным. При этом кроме эффекта упрочнения поверхности достигается эффект повышения прочности и жаропрочности из-за присутствия стойких нитридов во всем объеме материала. В частности, такое азотирование используется для тугоплавких металлов и сплавов на их основе, хромоникелевых сплавов легированных титаном (Патент РФ № 2148675). Такие материалы используются для изделий, работающих при высоких температурах (свыше 1000°С), а эффект повышения жаропрочности достигается формированием нитридов легирующих элементов, стойких к распаду при высокой температуре (как правило, нитридов титана). Недостатком данных методов азотирования является то, что в ряде случаев не удается достигать равномерной структуры нитридов по всему сечению, поскольку на поверхности остается слой с более грубыми выделениями нитридной фазы. Последующая термическая обработка может привести к растворению таких нитридов, но на их месте могут оставаться поры, которые понижают прочностные характеристики стали. Кроме этого, несмотря на то, что указанные материалы предназначены для работы при конкретных высоких температурах, они требуют присутствия легирующих элементов, что повышает стоимость данных материалов.

Наиболее близким к заявленному способу является принятый в качестве прототипа способ азотирования, описанный в патенте США № 4464207, согласно которому азотированию в аммиаке подвергают тонколистовую сталь толщиной 0,25 мм ферритного класса, содержащую хром в количестве 10-30%, титан в количестве 0,5-2,25% и углерод в количестве 0,03%. При этом процесс азотирования ведут при температурах в диапазоне 830-950°C в течение 1 часа или менее, после чего проводят нагрев при температуре около 1000°C для растворения сформировавшихся при азотировании нитридов хрома и образования более стойких к высокой температуре нитридов титана. При этом добиваются, что структура стали состоит из частиц нитридов, расстояние между которыми составляет менее 2 мкм. При этом добиваются эффекта повышения предела текучести как минимум на 10000 psi (~70 МПа) по сравнению с исходным состоянием при комнатной температуре и температуре 540°C. Недостатками данного способа являются предпочтительное использование нестандартной марки стали (с пониженным содержанием углерода и повышенным содержанием титана), а также предпочтительное использование среды, содержащей водород для выдержки после азотирования, что приводит к удорожанию получаемого материала и процесса его получения. Кроме этого предлагаемая обработка, включающая азотирование и выдержку, после него позволяет добиться относительно не высокого увеличения прочности при комнатной и повышенной температурах (предел текучести возрастает на величину ~70 МПа).

Технической задачей, на решение которой направлено данное изобретение, является существенное повышение жаропрочности до температур ~700°C экономно-легированных ферритных сталей стандартных марок, содержащих углерод в количестве до 0,2% вес., хром в количестве 12-25% вес., титан в количестве 0,5-3% вес., упрощение процесса азотирования и термообработки.

Поставленная техническая задача решается тем, что процесс высокотемпературного внутреннего азотирования изделий толщиной до 2 мм из ферритной стали, содержащей углерод в количестве до 0,2 вес.%, хром в количестве 12-25 вес.%, титан в количестве 0,5-3 вес.%, ведут при температуре 1000-1200°C в среде чистого азота в течение 1-4 часов с последующим охлаждением на воздухе, далее проводят отжиг при температуре 500-900°C в бескислородной среде (в вакууме или в среде инертного газа) в течение 1-5 часов с охлаждением с печью, при этом образуется структура, содержащая мелкодисперсные нитриды хрома, стойкие вплоть до температуры 700°C, а также нитриды титана более крупного размера, стойкие до более высоких температур. Все нитриды распределены равномерно по всему сечению образца. При этом предел текучести и прочности возрастает на величину до 2 раз и более как при комнатной температуре, так и при температуре 700°C. Для азотирования используют стали, содержащие углерод в количестве до 0,5% вес., хром в количестве 12-25% вес., титан в количестве 0,5-3% вес., но преимущественно стали с высоким содержанием хрома (выше 20%), поскольку связывание хрома в нитриды приводит к понижению коррозионной стойкости стали.

Способ реализуется следующим образом.

Изделия с толщиной стенки до 2 мм обезжиривают и помещают в реактор (например, кварцевый сосуд), расположенный в печи, в который далее запускается газ - чистый азот. Азотирование ведут при температурах в диапазоне 1000-1200°C в течение 1-4 часов в среде азота, далее изделия вынимаются из реактора и охлаждаются на воздухе. После этого проводят отжиг при температурах 500-900°C в бескислородной среде в течение 1-5 часов с охлаждением с печью. Целью отжига после азотирования является избавление от мартенсита, образующегося в процессе охлаждения после азотирования, образование той части нитридов, которые не успели образоваться в процессе азотирования и охлаждения, а также гомогенизация с целью равномерного распределения выделений нитридов по всему сечению образца. В процессе азотирования и отжига образуются сквозная структура, состоящая из мелкодисперсных термодинамически стабильных нитридов хрома размером не более 500 нм и нитридов титана размером не более 1-3 мкм, равномерно распределенных в матрице по всему сечению без образования слоя грубых нитридов на поверхности. Нитриды стабилизируют структуру при повышенных температурах, обеспечивая эффективное дисперсионное упрочнение при температурах вплоть до 700°C. Таким образом в результате описанной обработки получается жаропрочный материал, способный работать при температурах до 700°C.

Пример 1. Полосы стали 08Х17Т в отожженном состоянии толщиной 0,5 мм обезжиривали ацетоном и спиртом и помещали в реактор (кварцевый сосуд), расположенный в печи типа СНОЛ, нагретой до температуры 1150°C, в который далее запускали газ азот частотой 99,999 со скоростью 0,2 л/мин. Азотирование проводили при температуре 1150°C в течение 3 часов, после чего полосы вынимали из реактора и охлаждали на воздухе. После этого проводили отжиг при температуре 600°C в вакууме в течение 3 часов с охлаждением с печью.

После азотирования проводили исследование микроструктуры и фазового состава методами оптической и просвечивающей электронной микроскопии, микрорентгеноспектрального анализа и метода рентгеновской дифракции. Микроструктура стали после такой обработки представляла собой выделения нитридов хрома толщиной 100-300 нм с расстоянием между ними 0,2-0,7 мкм, а также выделения нитридов титана толщиной до 3 мкм в матрице, содержащей азот в твердом растворе. Структура являлась полностью однородной по всему сечению образца, слоев с более грубыми выделениями нитридов у поверхностей материала не наблюдалось. Эффект упрочнения стали был достигнут за счет совместного действия азота в твердом растворе и образования выделений нитридов (дисперсионное упрочнение). Нитриды оказались стойкими к распаду вплоть до температур 700°C, что было подтверждено механическими испытаниями. Механические испытания проводили на плоских образцах, вырезанных из полос толщиной 0,5 мм по ГОСТ 1497-84 при температурах 20 и 700°C. Механические свойства образцов стали в исходном (до азотирования) состоянии и после азотирования и термической обработки представлены в таблице 1.

Таблица 1.
Механические свойства стали 08Х17Т до и после азотирования с термической обработкой
Состояние сталиТемпература испытаний 20°CТемпература испытаний 700°C
Предел текучести способ внутреннего азотирования ферритной коррозионно-стойкой   стали, патент № 2522922 0,2, МПаПредел прочности способ внутреннего азотирования ферритной коррозионно-стойкой   стали, патент № 2522922 в, МПаОтносительное удлинение способ внутреннего азотирования ферритной коррозионно-стойкой   стали, патент № 2522922 , %Предел текучести способ внутреннего азотирования ферритной коррозионно-стойкой   стали, патент № 2522922 0,2, МПаПредел прочности способ внутреннего азотирования ферритной коррозионно-стойкой   стали, патент № 2522922 в, МПаОтносительное удлинение способ внутреннего азотирования ферритной коррозионно-стойкой   стали, патент № 2522922 , %
Исходное 310-330440-460 26-3270-9080-100 75-80
После азотирования и т/о570-590 980-100017-20 180-200230-250 50-56

Из таблицы видно, что предлагаемое азотирование с термической обработкой приводит к увеличению предела текучести почти в 2 раза, а предела прочности несколько больше чем в 2 раза при комнатной температуре, примерно такие же соотношения сохраняются и при температуре испытаний 700°C, при которой в том числе сталь сохраняет очень высокую пластичность, превышающую 50%.

Измерение микротвердости до и после азотирования с термической обработкой показало, что в исходном состоянии микротвердость стали 08Х17Т находится на уровне 180-200 единиц HV, а после азотирования с термической обработкой она составила величину 430-450 единиц HV.

Класс C23C8/26 стальных поверхностей

способ обработки деталей для кухонной утвари -  патент 2526639 (27.08.2014)
способ циклического газового азотирования штампов из сталей для горячего деформирования -  патент 2519356 (10.06.2014)
способ азотирования деталей и устройство для его осуществления -  патент 2506342 (10.02.2014)
способ изготовления листа электротехнической стали с ориентированной зеренной структурой -  патент 2503728 (10.01.2014)
способ азотирования длинномерной полой стальной детали -  патент 2493288 (20.09.2013)
способ производства листа из электротехнической стали с ориентированным зерном -  патент 2465348 (27.10.2012)
столовые и/или сервировочные приборы, изготовленные из ферритной нержавеющей стали с мартенситным поверхностным слоем -  патент 2456906 (27.07.2012)
способ низкотемпературного азотирования стальных деталей -  патент 2415964 (10.04.2011)
способ ионного азотирования стали -  патент 2413784 (10.03.2011)
способ изготовления коленчатых валов -  патент 2369647 (10.10.2009)

Класс C23C8/80 последующая обработка

способ упрочнения титановых сплавов в газовой среде -  патент 2365671 (27.08.2009)
способ химико-термической обработки сталей в порошковых смесях -  патент 2348736 (10.03.2009)
способ химико-термической обработки деталей пар трения из сталей -  патент 2330100 (27.07.2008)
способ термической и химико-термической обработки стальных изделий в вакууме -  патент 2324001 (10.05.2008)
способ азотирования изделий в тлеющем разряде с эффектом полого катода -  патент 2276201 (10.05.2006)
способ поверхностного упрочнения изделий из стали -  патент 2251594 (10.05.2005)
способ изготовления тонких, труднорастворимых покрытий (варианты) -  патент 2250932 (27.04.2005)
способ обработки стальных изделий -  патент 2221078 (10.01.2004)
способ комбинированного борирования углеродистой стали -  патент 2210617 (20.08.2003)
способ упрочнения режущего и формообразующего инструмента из теплостойких хромистых сталей -  патент 2205892 (10.06.2003)
Наверх