способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68

Классы МПК:A61K51/00 Препараты, содержащие радиоактивные вещества, для использования в терапии или для исследований на живом организме
A61K103/00 Радиоактивные металлы
B01D15/42 характеризующаяся методом выделения, например замещением или элюированием
G01N30/02 колоночная хроматография
Автор(ы):, ,
Патентообладатель(и):Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (RU)
Приоритеты:
подача заявки:
2013-01-09
публикация патента:

Изобретение относится к способу получения активной фармацевтической субстанции для синтеза препаратов галлия-68, применяемых в позитронно-эмиссионной томографии. Способ включает следующие стадии: взаимодействие элюата генератора 68 Ge/68Ga с катионообменной смолой, промывку катионообменной смолы смесью соляной кислоты и этанола, элюирование 68 Ga с катионообменной смолы смесью соляной кислоты и этанола, взаимодействие полученного элюата с анионообменной смолой, промывку анионообменной смолы этиловым спиртом, осушение анионообменной смолы воздухом или инертным газом и элюирование 68 Ga с анионообменной смолы водным раствором соляной кислоты. Изобретение обеспечивает увеличение выхода процесса на 10%. 2 табл., 2 ил., 3 пр. способ получения активной фармацевтической субстанции для синтеза   препаратов галлия-68, патент № 2522892

Рисунки к патенту РФ 2522892

способ получения активной фармацевтической субстанции для синтеза   препаратов галлия-68, патент № 2522892 способ получения активной фармацевтической субстанции для синтеза   препаратов галлия-68, патент № 2522892

Изобретение относится к медицине, в частности к способам получения растворов 68Ga высокой чистоты, и может быть использовано для синтеза радиофармпрепаратов (РФП), применяемых в позитронно-эмиссионной томографии (ПЭТ).

Из всех известных радиоактивных изотопов галлия три - 66Ga, 67Ga и 68Ga - благодаря своим ядерно-физическим свойствам нашли применение в ядерной медицине [1, 2].

Радионуклид 68Ga, получаемый из радионуклидного генератора 68Ge/68Ga [3] в виде хлорида 68 GaCl3, является одним из наиболее перспективных и играет роль активной фармацевтической субстанции (АФС) в синтезе РФП для ПЭТ. Большой период полураспада материнского 68 Ge (T½=271 сут) обеспечивает продолжительный срок эксплуатации генератора. В свою очередь, малый период полураспада 68Ga (Т½=68,1 мин) позволяет использовать РФП необходимой активности, не создавая при этом значительной дозовой нагрузки на пациента. Кроме того, катион 68 Ga3+ может формировать устойчивые комплексные соединения со многими лигандами, содержащими кислород, азот и серу как атомы-доноры, что делает его пригодным для синтеза большого количества хелатных комплексов и макромолекул различного функционального назначения. Большинство меченых молекулярных визуализирующих агентов включает лигандную систему - бифункциональный хелатирующий агент (БХА), которая связывает радионуклид и содержит функциональные группы, способные связывать комплекс с биомолекулой. Наиболее значимыми полидентатными представителями используемых бифункциональных хелатирующих агентов являются макроциклические 1,4,7-триазациклононан-N,N',N''-триуксусная кислота (NOTA), 1,4,8,11-тетраазациклотетрадекан-1,4,8,11-тетрауксусная кислота (ТЕТА) и 1,4,7,10-тетраазациклодекан-N,N',N'',N'''-тетрауксусная кислота (DOTA) и их производные [4-15].

Химическая форма 68Ga в элюате генератора 68Ge/ 68Ga обеспечивает его непосредственное использование в приготовлении РФП при условии наличия подходящего хелатирующего агента. Однако присутствие в элюате конкурирующих химических примесей Cd2+; Со2+; Cu2+; In 3+; Fe2+; Fe3+; Lu3+; Ni2+; Zn2+ и других уже в количестве 1 мкМ неприемлемо для получения качественного РФП, так как препятствует образованию комплексов 68Ga3+ [10]. Проскок долгоживущего материнского 68Ge через колонку с сорбентом составляет 10-2-10-3 % от общей активности 68Ge в генераторе на момент элюирования. Кроме того, достаточно большой объем (5 мл) элюата генератора требует концентрирования активности для мечения наномолярных количеств биоконъюгатов. Таким образом, очистка и концентрирование элюата генератора 68Ga являются необходимыми процедурами перед проведением собственно реакции мечения биоконъюгатов.

Известен способ получения химически и радиохимически чистого радионуклида 68Ga [8], согласно которому Frank Rösch и Konstantin P. Zhernosekov с соавторами предложили использовать катионный обмен для очистки и концентрирования элюата генератора 68 Ge/68Ga. По описанному способу элюат генератора 68Ge/68Ga приводят во взаимодействие с катионообменной смолой Dowex 50W×8, после чего 68Ga элюируют с катионита смесью соляной кислоты и ацетона. Данный способ защищен патентом [9] и позволяет получить очищенный и концентрированный раствор 68Ga объемом 400 мкл в смеси 0,05 М HCl/97,6% ацетона с выходом более 97% от начальной активности 68 Ga (с учетом распада). Полученный таким способом раствор используют непосредственно для реакции мечения биоконъюгатов. Этот способ характеризуется простотой реализации, быстротой, высокой степенью концентрирования и высоким выходом 68Ga, высокими коэффициентами очистки от неизотопных носителей (Zn2+ , Fe3+, Ti4+) и может быть с успехом применен для синтеза меченных 68Ga ПЭТ-маркеров [10]. Однако получение меченого соединения практически в растворе ацетона делает невозможным его применение в клинических целях непосредственно после проведения реакции мечения. Поэтому после проведения реакции мечения синтезированный РФП должен пройти стадию твердофазной экстракции для удаления ацетона и повышения радиохимической чистоты, что удлиняет процесс синтеза готового РФП (то есть приводит к потерям короткоживущего радионуклида).

Известен способ получения химически и радиохимически чистого радионуклида 68Ga, предложенный И.Великян, Б.Лунгстремом (Irina Velikyan, Bengt Långström) и др. [11], который включает стадию очистки и концентрирования элюата генератора 68 Ge/68Ga с использованием анионообменной смолы на основе полистиролдивинилбензола, содержащей НСО3способ получения активной фармацевтической субстанции для синтеза   препаратов галлия-68, патент № 2522892 - в качестве противоионов и функциональные группы четвертичного амина. По описанной технологии [11] элюат генератора 68Ge/68Ga смешивают с концентрированной соляной кислотой (для доведения концентрации HCl до 4-5 М). После этого полученный раствор приводят во взаимодействие с анионообменной смолой на основе полистиролдивинилбензола, включающей НСО 3способ получения активной фармацевтической субстанции для синтеза   препаратов галлия-68, патент № 2522892 - в качестве противоионов и функциональные группы четвертичного амина. Более 99% 68Ga при этом удерживаются на смоле и могут быть впоследствии элюированы 200 мкл чистой воды. Способ характеризуется быстротой, высокой степенью концентрирования и высоким выходом 68Ga. Однако данный метод весьма неэффективен для очистки в динамических условиях элюата генератора 68Ge/68Ga от микропримесей Fe(III) и Zn(II), так как они также образуют анионные хлор-комплексы. К недостаткам данного способа также относятся: использование концентрированной соляной кислоты (что требует применения особо стойких конструкционных материалов), а также тот факт, что при элюировании 68 Ga с анионообменной смолы водой после концентрированной соляной кислоты крайне сложно контролировать pH конечного раствора (из-за присутствия остаточной кислоты на смоле, концентрация HCl в конечном растворе может превышать 0,1 М, что делает раствор непригодным для проведения реакции мочения биоконъюгатов).

Известен способ выделения дочернего радиоизотопа 68 Ga, в значительной степени свободного от примесей материнского 68Ge [14], с использованием аппарата, включающего первую колонку с сорбентом, содержащим материнский 68 Ge и дочерний 68Ga, источник первого элюента, соединенный с первой колонкой для выделения дочернего 68Ga из первого сорбента; первый элюент содержит лимонную кислоту, то есть отделенный галлий существует в форме цитрата галлия, который в смесительной камере смешивают с концентрированной соляной кислотой. Цитрат галлия преобразуется в галлия тетрахлорид, который сорбируется во второй колонке, а затем элюируется водой или слабым буферным раствором для последующего мечения молекулы-мишени с окончательной доочисткой продукта на третьей колонке. К недостаткам данного способа относится уже отмеченное выше использование концентрированной соляной кислоты (что требует применения особо стойких конструкционных материалов). Кроме того, используется достаточно сложная - трехступенчатая схема очистки, при этом вопрос очистки от примесей металлов не рассматривается и соответствующие данные не представлены.

Watanabe Yasuyoshi и Yoshioka Hideto [15] предложили метод выделения галлия с помощью анионного обмена, который заключается в сорбции галлия и других катионов из сильнокислого раствора на анионообменной смоле, промывке анионообменной смолы спиртом (метанол, этанол, изопропанол) и десорбции галлия со смолы с помощью разбавленной кислоты. По сути, метод является слегка дополненной технологией выделения галлия, предложенной И.Великян [11]. Соответственно, методу присущи все те же недостатки: применение концентрированной кислоты в технологии, невысокая селективность в отношении очистки галлия от цинка и железа, невозможность организации непрерывного процесса в замкнутом цикле. При этом использование спирта для промывки анионообменной смолы позволяет с большей точностью регулировать кислотность финального раствора, так как со смолы удаляется остаточная концентрированная кислота.

Известен способ получения растворов 68Ga с помощью системы, состоящей из двух колонок, содержащих катионит и анионит [16]. В первой колонке 68Ga сорбируется из раствора 0,1-0,5 М HCl (в примере 0,5 М) на сильнокислотном катионите (AG 50W×8), a 68Ge проходит через колонку. Для более полного отделения 68Ge колонку промывают 0,5 М HCl. Для десорбции 68Ga используют 4 М раствор HCl. Из этого раствора 68Ga сорбируется во второй колонке на анионите UTEVA (диамил[амил]фосфонат). Для десорбции 68Ga используют 2-5 мл 0,1 М HCl. Время процесса 22 мин. Выход 68Ga с учетом распада составляет 95%, примесь материнского 68Ge в продукте - менее 10-7 %. Как вариант в целях экономии времени предлагается использовать одну колонку с анионитом и вести сорбцию 68Ga на анионите из 8 М раствора HCl, однако в таком случае невозможно получить столь высокий уровень очистки от 68Ge. В качестве недостатка способа авторы отмечают повышенное содержание в продукте кальция и фосфора, который, видимо, частично вымывается из материала анионита. Кроме того, так же как и в описанных выше способах, в данном случае необходимо использовать достаточно концентрированные растворы HCl. К недостаткам способа можно также отнести сравнительно большой объем (2-5 мл) получаемого продукта, т.е. задача концентрирования элюата генератора 68Ge/68Ga данным способом не решается.

Наиболее близким по технической сущности и достигаемому результату является способ по патенту РФ № 2464043 [17], включающий следующие стадии: взаимодействие элюата генератора 68Ge/68Ga с катионообменной смолой, промывку катионообменной смолы смесью соляной кислоты и ацетона, элюирование 68Ga с катионообменной смолы смесью соляной кислоты и ацетона, взаимодействие полученного элюата с анионообменной смолой, промывку анионообменной смолы этиловым спиртом, осушение анионообменной смолы инертным газом и элюирование 68Ga с анионообменной смолы водным раствором соляной кислоты. Использование этого способа позволяет получать концентрированные водные растворы хлоридных комплексов радионуклида 68Ga высокой химической и радиохимической чистоты, что обеспечивает возможность получения РФП 68Ga с радиохимической чистотой (РХЧ) не менее 95%. Однако метод не лишен недостатков, и главным из них является присутствие ацетона в рабочих растворах, что влечет за собой, во-первых, крайне непродолжительный срок хранения (годности) самих рабочих растворов из-за, как было установлено, протекания реакции конденсации между соляной кислотой и ацетоном с образованием мезитилоксида и, во-вторых, усложняет саму технологию синтеза (необходимость отмывки от ацетона) и контроль качества конечного РФП (необходимость аналитического подтверждения допустимого содержания ацетона в препарате).

Целью изобретения является разработка нового способа получения активной фармацевтической субстанции для синтеза препаратов галлия-68, позволяющего получать концентрированные растворы 68Ga высокой химической и радиохимической чистоты, не содержащие органических растворителей, которые могут быть использованы для синтеза РФП с более высокой удельной (молярной) активностью и радиохимической чистотой в максимально удобной для клинического использования форме.

В результате экспериментальных исследований был разработан способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68 с использованием ионообменных технологий, обеспечивающий возможность снижения содержания радионуклидной примеси 68Ge на четыре-пять порядков (на порядок ниже, чем в прототипе [17] и, следовательно, позволяющий снизить при проведении ПЭТ диагностики с препаратами 68Ga поглощенные дозы в критических органах и всем теле пациента), а содержания химических примесей - на 3-5 порядков при одновременном концентрировании растворов 68Ga в 15-25 раз. Кроме того, реальный выход процесса очистки и концентрирования растворов 68Ga (за счет изменения технологии и снижения времени технологического цикла и контроля качества готового РФП) удалось увеличить на 10%.

Для достижения поставленной цели и в соответствии с блок-схемой, представленной на фиг.1, элюат генератора 68Ge/68Ga (5 мл 0,1 М HCl) подавали на первую колонку с сильнокислотной катионообменной смолой, на которой 68Ga количественно сорбировался. При этом основная часть химических примесей, содержащихся в элюате, и материнский радионуклид 68Ge на катионите не задерживались. Количественно сорбировались лишь ионы алюминия и частично железа (~30%). При промывке катионита смесью HCl и этанола (объемная концентрация HCl от 0,2 до 1 М, объемное содержание этанола от 30 до 90%) удалялись частично Al3+ и остатки Zn 2+, In3+, Cu2+, Ti4+, Pb2+, при этом 68Ga с катионита не элюировался. Затем 68Ga количественно и практически селективно элюировали с катионита смесью HCl и этанола (объемная концентрация HCl от 1,8 до 2,5 М, объемное содержание этанола от 20 до 70%). Полученный элюат направляли на вторую колонку с анионообменной смолой, на которой происходила количественная сорбция 68 Ga. При этом Al3+ и некоторые другие примеси не сорбировались. Для полного удаления следов HCl анионообменную смолу промывали этанолом и/или просушивали воздухом или инертным газом. После чего 68Ga количественно элюировали с анионообменной смолы 200-300 мкл HCl с концентрацией 0,01-0,1 М. Таким образом, исходный раствор 68Ga был сконцентрирован в 15-25 раз. В результате получали очищенный и концентрированный раствор хлоридных комплексов 68Ga в соляной кислоте с концентрацией 0,01-0,1 М, представляющий собой активную фармацевтическую субстанцию, которую затем непосредственно использовали в реакции мочения. Время процесса очистки и концентрирования - не более 15 мин, выход - 85-90%.

Синтезированные с использованием полученных растворов РФП 68Ga характеризовались высокой радиохимической чистотой (более 98%).

На фиг.1 изображена блок-схема процесса получения активной фармацевтической субстанции для синтеза препаратов галлия-68; на фиг.2 - хроматограммы анализа готового препарата ДОТА-ТАТЕ, 68Ga при синтеза с исходным элюатом генератора 68Ge/68Ga и очищенным раствором 68Ga.

Пример 1.

Очистка модельного раствора.

Используя соли (хлориды) металлов и соляную кислоту концентрации 0,1 М, готовят модельный раствор. Содержание металлов в модельном растворе показано в таблице 1.

Полученный раствор (5 мл) пропускают через колонку, содержащую ионообменную смолу Dowex AG 50W×8 в Н+-форме (200-400 mesh). Затем колонку промывают раствором соляной кислоты и этанола (0,5 М HCl/70 об.% этанола), после чего пропускают 5 мл раствора соляной кислоты и этанола (2,5 М HCl/50 об.% этанола). Полученный раствор пропускают через колонку с анионитом, содержащую ионообменную смолу Dowex 1×2 в Cl--форме. Затем колонку с анионитом промывают 5 мл этилового спирта. Через промытую колонку пропускают раствор 0,1 М HCl.

Исходный модельный раствор, а также полученные промежуточные растворы и элюат после колонки с анионитом (модель АФС) собирают и анализируют на содержание металлов методом индуктивно-связанной плазмы с масс-спектрометрией (ICP-MS). Результаты анализа, а также рассчитанные величины коэффициентов очистки К приведены в таблице 1.

Таблица 1
Содержание металлов на различных стадиях процесса и степень очистки модельного раствора
ЭлементСодержание металлов, мкг/лК
Исходный модельный растворРаствор после сорбции на катионитеПромывка катионита Элюат после катионита Раствор после сорбции на анионитеПромывка анионитаЭлюат после анионита
Al34615,7 3831,76468,7 28703,721 735,5 587,2134,4~2,6·10 2
Ti 8673,69769,2933,5 0,00,0 0,03,1~2,8·10 3
Fe 23022,717778,9 8010,5211,867,3 24,2115,5 ~2,0·102
Cu 49285,552574,6 10301,10,9 7,32,44,5 ~1,1·105
Zn338797,1362071,8 72051,5835,2 91,18,341,7 ~8,1·104
Ge4046,65426,1 34,90,0 0,00,00,2 ~2,0·105
Zr737,016,1 0,00,0 0,00,00,1 ~7,4·103
In15276,218040,4 786,40,2 0,00,00,3 ~5,1·105
Pb25151,722362,5 4653,846,4 29,90,70,8 ~2,7·103

Анализируя данные, представленные в таблице 1, можно сделать вывод, что модельный раствор галлия подвергся значительной очистке, при этом использование водно-этанольных растворов соляной кислоты позволяет достичь более высоких коэффициентов очистки от цинка, свинца, меди, германия, титана и индия но сравнению со способом по патенту РФ № 2464043 [17].

Пример 2.

Очистка элюата генератора 68Ge/68Ga.

С целью получения активной фармацевтической субстанции для синтеза препаратов галлия-68 используют генератор 68Ge/ 68Ga (паспорт С-310-11 от 12.10.2011 г., активность 740 МБк на 17.10.2011 г., производитель ЗАО «Циклотрон»). Для элюирования используют 0,1 М HCl. Объем элюата - 5 мл. Активность на момент элюирования - 466 МБк. (0,5 мл элюата отбирают для проведения анализа на содержание металлов и проскок материнского радионуклида 68Ge.) Полученный элюат пропускают через колонку с катионитом, содержащую ионообменную смолу Dowex AG 50W×8 в H+-форме (200-400 mesh). Затем колонку промывают 5 мл раствора соляной кислоты и этанола (0,5 М HCl/70 об.% этанола). Через промытую колонку пропускают 2 мл раствора соляной кислоты и этанола (2,5 М HCl/50 об.% этанола). Полученный элюат пропускают через колонку с анионитом, содержащую ионообменную смолу Dowex 1×2 в Cl--форме, после чего колонку продувают аргоном в течение 5 мин. Затем через колонку с анионитом пропускают 300 мкл 0,1 М раствора соляной кислоты. Полученный элюат собирают. Измеряют абсолютную активность. Анализируют на содержание металлов. Активность полученного элюата через 15 мин после элюирования генератора 68Ge/68Ga составляет 390 МБк. Выход процесса очистки без учета распада составляет 83,7%, с учетом распада - 98,8%. Результаты анализа на содержание металлов (метод индуктивно-связанной плазмы с масс-спектрометрией ICP-MS) исходного и очищенного элюата представлены в таблице 2.

Таблица 2
Содержание металлов в исходном элюате генератора 68 Ge/68Ga и очищенном концентрированном растворе активной фармацевтической субстанции хлорида галлия-68
ЭлементСодержание металлов, мкг/л
До очистки После очистки
алюминий Al286,55,5
титанTi 1187,61,8
хромCr 34,50,01
железоFe183,9 0,01
никель Ni6,4 0,3
медь Cu19,3Не обнаружен
цинкZn 5132,00,5
цирконийZr 3028,00,01
свинецPb 278,00,01
68Ge/68Ga, %5,3×10 -31,3×10-8

Таким образом, применение разработанного способа очистки элюата генератора 68Ge/68 Ga позволяет получить активную фармацевтическую субстанцию для синтеза препаратов галлия-68. Время технологического цикла 15 мин, экономия времени на контроле качества готового продукта за счет отсутствия необходимости контроля содержания примеси ацетона - 15 мин. В результате удается снизить потери готового продукта за счет распада радионуклида на 14±1%.

Пример 3.

Приготовление РФП.

По 1 мл исходного элюата генератора 68Ge/68 Ga и полученной по заявляемому способу, как описано в Примере 2, активной фармацевтической субстанции для синтеза препаратов галлия-68 добавляют в 2 флакона с лиофилизатом, состоящим из 10 мг ацетата натрия и 20 мкг пептида DOTA-ТАТЕ. Затем реакционную смесь во флаконах термостатируют при температуре 95°С в течение 10 мин. Выход реакции мечения (радиохимическая чистота препарата) составляет 62,0% для исходного элюата и 99,0% при использовании концентрированного и очищенного раствора 68 Ga [метод анализа - высокоэффективная жидкостная хроматография, колонка С18, элюент - ацетонитрил (18%) - вода - трифторуксусная кислота (0,05%)]. Хроматографический анализ показывает (фиг.2), что в результате использования предложенного способа получения активной фармацевтической субстанции для синтеза препаратов галлия-68 приготовлен РФП с высокой радиохимической чистотой. В предварительных анализах (методом ГЖХ) было установлено, что содержание этанола в готовом препарате не превышает 0,1%. Поэтому в соответствии с ГФ XII (ОФС 42-0057-07 «Остаточные органические растворители») готовый препарат контролируют только по показателям «радиохимическая чистота» и «рН».

Таким образом, поставленная цель получения активной фармацевтической субстанции для синтеза препаратов галлия-68 с высокой радиохимической чистотой достигнута.

Источники информации

1. Audi G., Bersillon O., Blachot J.A. et al. The Nubase evaluation of nuclear and decay properties. // Nucl. Phys. A, 2003, V.729, No 1, P.3-128

2. Health Physics & Radiological Health Handbook, 3rd ed.; Williams & Wilkins: Baltimore, MD, 1998, P.6-53.

3. RU № 2126271 С1, 20.02.1999.

4. Meyer, G.J., H.Macke, J.Schuhmacher, W.H.Knapp and M.Hofmann. 68 Ga-labelled DOTA-derivatised peptide ligands, Eur. J. Nucl. Med. Mol. Imaging (2004) 31: 1097-1104 (2004).

5. WO 2005/057589 A2, 23.06.2005.

6. Maecke, H.R., M.Hofmann, and U.Haberkorn. 68Ga-Labeled Peptides in Tumor Imaging,

J. Nucl. Med. 46: 172S-178S (2005).

7. Breeman W.A.P., de Jong M, Blois E, Bernard BF, Konijnenberg M., Krenning E.P.; Radiolabelling DOTA-peptides with 68 Ga. Eur. J. Nucl. Med. Mol. Imaging. - 2005. - V.33. - P.478-85.

8. Zhernosekov K.P., Filosofov D.V., P.Rosch et al. Processing of generator-produced 68Ga for medical application. J. Nucl. Med. - 2007. - Vol.10. - P.1741-1748.

9. DE 102004057225 B4, 12.10.2006 (EP 000001820197, WO 002006056395, US 20080277350).

10. Astia, M., De Pietria, G., Rosch, F. et al. Validation of 68Ge/ 68Ga generator processing by chemical purification for routine clinical application of 68Ga-DOTATOC. // Nuclear Medicine and Biology. - 2008. - Vol.35. - P.721-724.

11. RU 2343965 C2, 20.01.2009 (WO 2004/089517, EP 1610886).

12. US 7586102 B2, 08.09.2009.

13. WO 2004/089425 A1, 21.10.2004.

14. US 7728310 B2, 01.06.2010.

15. Japanese Patent 2009-229201 A, 08.10.2009.

16. McAlister D.R., Horwitz E.P. Automated two column generator systems for medical radionuclides. Applied Radiation and Isotopes 67 (2009) 1985-1991.

17. RU 2464043 C1, 20.10.2012.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения активной фармацевтической субстанции для синтеза препаратов галлия-68 путем последовательного пропускания элюата генератора 68Ge/68Ga через колонку с катионитом и колонку с анионитом, включающий следующие стадии: взаимодействие элюата генератора 68Ge/68 Ga с катионообменной смолой, при котором происходит сорбция 68Ga, промывку катионообменной смолы с осажденным 68Ga, элюирование 68Ga с катионообменной смолы, взаимодействие полученного элюата с анионообменной смолой с осажденным 68Ga, промывку анионообменной смолы этиловым спиртом с последующим ее осушением воздухом или инертным газом, и элюирование 68Ga с анионообменной смолы водным раствором соляной кислоты от 0,01 до 0,1 М HCl объемом в 15-25 раз меньше объема исходного элюата генератора 68Ge/68Ga, отличающийся тем, что для промывки катионообменной смолы используют смесь соляной кислоты и этанола, где объемная концентрация соляной кислоты в смеси составляет от 0,2 до 1 М, а объемное содержание этанола - от 30 до 90%; для элюирования 68Ga с катионообменной смолы используют смесь соляной кислоты и этанола, где объемная концентрация соляной кислоты в смеси составляет от 1,8 до 2,5 М, а объемное содержание этанола - от 20 до 70%.


Скачать патент РФ Официальная публикация
патента РФ № 2522892

patent-2522892.pdf
Патентный поиск по классам МПК-8:

Класс A61K51/00 Препараты, содержащие радиоактивные вещества, для использования в терапии или для исследований на живом организме

Патенты РФ в классе A61K51/00:
молекулярная визуализация -  патент 2529804 (27.09.2014)
циклический октапептид, радиофармацевтическое средство на его основе и способ применения радиофармацевтического средства для получения лекарственных (фармацевтических) средств для лечения новообразований, экспрессирующих соматостатиновые рецепторы -  патент 2528414 (20.09.2014)
способ получения реагента для приготовления радиофармпрепарата на основе меченного технецием-99м ципрофлоксацина -  патент 2527771 (10.09.2014)
способ диагностики недостаточности сфинктера одди -  патент 2525210 (10.08.2014)
трициклические индольные производные в качестве лигандов pbr -  патент 2525196 (10.08.2014)
реагенты и способы введения радиоактивной метки -  патент 2524284 (27.07.2014)
способ лечения раковых опухолей -  патент 2524194 (27.07.2014)
конъюгаты антагониста пептида аналога бомбезина -  патент 2523531 (20.07.2014)
меченые молекулярные визуализирующие агенты, способы получения и способы применения -  патент 2523411 (20.07.2014)
способ получения реагента для приготовления радиофармпрепарата на основе меченного технецием-99м ципрофлоксацина с сохранением его стабильности при длительном хранении -  патент 2522498 (20.07.2014)

Класс A61K103/00 Радиоактивные металлы

Патенты РФ в классе A61K103/00:
способ получения реагента для приготовления радиофармпрепарата на основе меченного технецием-99м ципрофлоксацина -  патент 2527771 (10.09.2014)
способ получения реагента для приготовления радиофармпрепарата на основе меченного технецием-99м ципрофлоксацина с сохранением его стабильности при длительном хранении -  патент 2522498 (20.07.2014)
способ лечения при злокачественных опухолях позвоночника и метастазах злокачественных опухолей в позвоночник -  патент 2520682 (27.06.2014)
способ получения реагента для приготовления меченного технецием 99-m наноколлоида на основе гамма-оксида алюминия -  патент 2512595 (10.04.2014)
способ приготовления реагента для получения меченого технецием-99м норфлоксацина -  патент 2506954 (20.02.2014)
способ визуализации -  патент 2505316 (27.01.2014)
способ получения средства для рентгенологического исследования -  патент 2491959 (10.09.2013)
способ дифференциальной диагностики различных типов слабоумия -  патент 2483754 (10.06.2013)
новые композиции на основе полисахаридов, привитых с помощью полиаминных или полисульфированных соединений -  патент 2481856 (20.05.2013)
магнитные наночастицы для применения при гипертермии, их приготовление и применение в магнитных системах для фармакологического использования -  патент 2481125 (10.05.2013)

Класс B01D15/42 характеризующаяся методом выделения, например замещением или элюированием

Класс G01N30/02 колоночная хроматография

Патенты РФ в классе G01N30/02:
способ количественного определения 2,4-дихлорфенола в крови методом газохроматографического анализа -  патент 2521277 (27.06.2014)
способ определения микотоксинов в продуктах животного и растительного происхождения -  патент 2514828 (10.05.2014)
способ определения содержания труднолетучих органических соединений в газообразной среде, композиция в качестве сорбента, применение сорбента -  патент 2510501 (27.03.2014)
регулятор расхода газа -  патент 2509334 (10.03.2014)
способ приготовления высокоэффективных колонок для ионной хроматографии -  патент 2499628 (27.11.2013)
способ анализа оптических и структурных изомеров -  патент 2494390 (27.09.2013)
способ жидкостной хроматографии и устройство для его осуществления -  патент 2493563 (20.09.2013)
способ диагностики патологий, связанных с эндокринными заболеваниями -  патент 2485512 (20.06.2013)
универсальная система химического анализа для газовой хроматографии (усха-гх), устройство крана-дозатора и детектора плотности газов -  патент 2480744 (27.04.2013)
способ определения количественного содержания акрилонитрила в выдыхаемом воздухе методом газовой хроматографии -  патент 2473905 (27.01.2013)


Наверх