способ получения наномодифицированного связующего

Классы МПК:C08L63/00 Композиции эпоксидных смол; композиции производных эпоксидных смол
C08K3/04 углерод
C08J3/28 обработка волновой энергией или облучением частицами
B82B3/00 Изготовление или обработка наноструктур
Автор(ы):, , , , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) (RU)
Приоритеты:
подача заявки:
2012-11-15
публикация патента:

Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра применения. Способ получения связующего включает введение в основу наномодификатора - углеродных нанотрубок с последующим ультразвуковым диспергированием наномодификатора в основе, причем в качестве основы используют фурфуролацетоновую смолу, углеродные нанотрубки вводят в основу в количестве 0,001-30 мас.%. При этом перед введением в основу углеродные нанотрубки обезвоживают, а процесс ультразвукового диспергирования ведут при комнатной температуре во временном диапазоне от 5 минут до 12 часов. Причем при осуществлении способа не требуется использование растворителя. Результатом является обеспечение равномерного распределения УНТ по объему основы материала, в который вводят данное связующее, и сокращение времени получения этого связующего. 1 пр.

Формула изобретения

Способ получения наномодифицированного связующего, включающий введение в основу наномодификатора - углеродных нанотрубок с последующим ультразвуковым диспергированием наномодификатора в основе, отличающийся тем, что в качестве основы используют фурфуролоацетоновую смолу, причем углеродные нанотрубки вводят в основу в количестве 0,001-30 мас.% по отношению к основе, перед введением в основу их обезвоживают, а процесс ультразвукового диспергирования ведут при комнатной температуре во временном диапазоне от 5 минут до 12 часов.

Описание изобретения к патенту

Изобретение относится к области получения композиционных материалов на основе смол, диспергированных наномодификатором - углеродными нанотрубками (УНТ), которые могут быть использованы для введения в высоковязкие основы при получении полимерных композиционных материалов широкого спектра применения.

Из уровня техники известно, что уникальное сочетание свойств УНТ, таких как малые размеры, большая удельная поверхность, термическая и химическая стабильность, высокая прочность, представляет интерес и открывает большие возможности для их применения. Они широко используются в различных областях промышленности, в частности при производстве клеев, покрытий и в качестве упрочняющих наполнителей для композитных материалов. Помимо улучшения механических свойств композитов, использование в их составе УНТ может существенно увеличивать их теплопроводность. Благодаря введению УНТ в полимеры последние становятся более устойчивыми по отношению к температуре, агрессивным химикатам, экстремальным давлениям и к истиранию.

Одним из основных методов введения УНТ в основы для получения различных видов суспензий является ультразвуковое диспергирование. Использование данного метода позволяет получать однородные и химически чистые смеси (суспензии) твердых частиц в жидкостях, например смолах. Диспергирование суспензий осуществляется при воздействии ультразвука на агрегаты твердых частиц, связанные между собой силами слипания, спекания или спайности. При ультразвуковом диспергировании смесей дисперсность продукта увеличивается на несколько порядков по сравнению с традиционным механическим измельчением. Однако и на этом этапе существуют определенные сложности, например, введение УНТ в смолы, которые являются основой для большого числа композиционных материалов широкого спектра назначения. Смолы, как известно, обладают высокой вязкостью, что делает невозможным напрямую вводить в них УНТ. В связи с этим необходимо подбирать специальную жидкость-растворитель, в которой будет возможно продиспергировать нанотрубки, после чего его (растворитель) испаряют, и, таким образом, переводят УНТ в смолу.

В свою очередь, из-за сильных Ван-дер-Ваальсовых взаимодействий УНТ образуют кластеры, приводящие к достаточно крупным агрегатам, нерастворимым в большинстве жидкостей, что осложняет подбор необходимого растворителя (См. Shane D. В., Zhenyu S., David R., Philip V. S., James P. H., Jonathan N. C. Milticomponent Solubility parameters for Single-Walled Carbon Nanotube Solvent Mixtures. ACS Nano: 2009, 3(8), 2340-2350).

Более того, даже если решить эту проблему, остается актуальным вопрос о способе перевода диспергированных нанотрубок из растворителя в требуемую смолу. Для этого УНТ диспергируют в ацетоне, после чего в нем же растворяют смолу с последующим упариванием растворителя. Это все представляет собой достаточно трудоемкий процесс с возможными потерями вещества и затратой дополнительного времени (См. Toshiki О., Keiichi S., Kazuhiro М. Process for producing carbon nanotube reinforced composite material. US 2006/0058443 A1, опубл. 16.03.2006).

Известен способ получения связующего, согласно которому фуллерен С60, открытые УНТ и фуллероидный многослойный наномодификатор астрален в виде суспензии в ацетоне перемешивают путем ультразвукового воздействия с помощью погружного ультразвукового излучателя, после чего указанные компоненты вводят в эпоксидную смолу ЭХД. В полученную смесь вводят отвердитель - 4,4способ получения наномодифицированного связующего, патент № 2522884 -диаминодифенилсульфон с получением полимерного связующего (см. патент РФ № 2223988, МПК C08L 63/00, С08К 13/02, В32В 17/10, С08К 13/02, С08К 3/04, С08К 5/17, С08К 7/02, С08К 7/06, С08К 7/14, опубликовано 20.02.2004).

В результате анализа известного способа необходимо отметить, что он предполагает введение различных наномодификаторов в виде суспензии в органическом разбавителе в вязкую эпоксидную смолу, в которой происходит их агрегирование и выделение в виде осадка. Данный осадок трудно перемешивается после хранения, и при последующем редиспергировании весьма сложно получить связующее с модификатором наноразмерного уровня. Таким образом, к недостаткам известного способа следует отнести невозможность редиспергирования и агрегирования наномодификатора в условиях хранения. Кроме того, к недостаткам данного метода можно отнести сравнительную нестабильность получаемых дисперсий, а также определенные сложности, связанные с тем, что полученное связующее растворено в ацетоне, как в растворителе, что предполагает необходимость отдельной стадии испарения последнего, после введения его в эпоскидную смолу, что, в свою очередь, вызывает дополнительные временные и трудовые затраты.

Известен способ изготовления наномодифицированного связующего, включающий получение концентрата путем диспергирования частиц наномодификатора - нанотрубок в матрице в процессе ультразвукового воздействия и введение упомянутого концентрата в связующее, причем в качестве матрицы и связующего используют, по меньшей мере, одну конденсационную смолу с вязкостью более 600 сП, а ультразвуковое воздействие при получении концентрата осуществляют с мощностью излучения от 1 до 5 кВт и амплитудой от 20 до 80 мкм (см. патент РФ № 2415884, МПК C08J 3/20, C08J 5/04, В32В 27/18, опубликовано 10.04.2011) - наиболее близкий аналог.

В результате анализа известного способа необходимо отметить, что использование в качестве связующего очень вязких смол препятствует полному диспергированию в них УНТ. Кроме того, учитывая, что УНТ обладают свойством образовывать труднорастворимые кластеры, слипающиеся в агрегаты, непосредственное диспергирование последних в очень вязкие системы представляется достаточно трудоемким процессом, что, однако, не гарантирует равномерного распределения УНТ по объему основы.

Технической задачей предлагаемого изобретения является разработка способа получения наномодифицированного связующего, обеспечивающего равномерное распределение УНТ по объему основы материала, в который вводят данное связующее, и сокращение времени получения этого связующего.

Технический результат обеспечивается тем, что в способе получения наномодифицированного связующего, включающем введение в основу наномодификатора - углеродных нанотрубок с последующим ультразвуковым диспергированием наномодификатора в основе, причем в качестве основы используют фурфуролацетоновую смолу, углеродные нанотрубки вводят в основу в количестве 0,001способ получения наномодифицированного связующего, патент № 2522884 30 мас.%, перед введением в основу их обезвоживают, а процесс ультразвукового диспергирования ведут при комнатной температуре во временном диапазоне от 5 минут до 12 часов.

Заявленный способ осуществляют следующим образом.

Рассчитанное количество наномодификатора (УНТ) в диапазоне концентраций от 0,001 мас.% до 30 мас.% обезвоживают и вводят в матрицу (растворитель) фурфуролацетоновую смолу, имеющую вязкость порядка 150 сП. Далее полученную суспензию заливают в емкость для ультразвуковой обработки. Для проведения ультразвуковой обработки суспензии начинают процесс ультразвукового диспергирования УНТ. Параметры ультразвукового воздействия подбирают в зависимости от количества УНТ в основе, объема этой основы и т.п. Так как в процессе диспергирования происходит разогревание смеси, его проводят при непрерывном охлаждении на водяной бане с поддерживанием постоянной комнатной температуры порядка 22способ получения наномодифицированного связующего, патент № 2522884 25°С.

Время диспергирования варьируется от 5 минут до 12 часов в зависимости от количества и типа вводимого наномодификатора. Время диспергирования каждый раз определяется экспериментально, а именно окончание реакции, например, отслеживают методом оптической микроскопии высокого разрешения. Фиксируют наличие частиц размером больше микрона, и когда они перестают обнаруживаться, диспергирование считается законченным.

Выбор в качестве растворителя именно фурфуролацетоновой смолы основывается на том, что эта смола обладает несколькими очень важными с технической точки зрения характеристиками. С одной стороны, она является подходящим растворителем для УНТ и ее вязкость сравнительно низкая, порядка 150 сП, поэтому в ней возможно проведение диспергирования. С другой стороны, диспергирование УНТ напрямую в смолу позволяет избежать дополнительной и достаточно долговременной стадии испарения растворителя, так как возможно осуществить введение полученного связующего непосредственно в эпоксидную смолу.

Для связующих, применяющихся в изготовлении препрегов для композиционных материалов, количественное соотношение наномодификатора составляет 0,001способ получения наномодифицированного связующего, патент № 2522884 0,1 мас.%. Данное соотношение обеспечивает улучшенные характеристики композиционных материалов. В случае изготовления сложных деталей небольшого размера невозможно использование углеволокна, и в таких случаях именно вводимые нанотрубки УНТ выступают в качестве армирующего компонента, а потому их концентрация в матрице может достигать 30 мас.%. Время диспергирования варьируется в зависимости от количества и типа вводимого наномодификатора и определяется экспериментально. Процесс диспергирования проводится при комнаткой температуре и не требует дополнительного нагрева, так как является экзотермичным.

Пример осуществления способа.

На аналитических весах отмерили 0,4 г (0,003 мас.%) нанотрубки УНТ марки Bayer MAterialScience BAYTUBES С 150 Р, предварительно прокалив их до постоянной массы в печи, для того чтобы испарить воду, присутствующую в них как примесь. Также отмерили 130 г фурфуролацетоновой смолы и поместили в емкость, далее добавили в фурфуролацетоновую смолу УНТ, после чего осуществляли ультразвуковое диспергирование, которое вели в течение 360 минут при непрерывном охлаждении диспергируемого раствора на водяной бане. Температуру раствора поддерживали около 25°С. Ультразвуковое диспергирование осуществляли посредством проточного ультразвукового смесителя, содержащего ультразвуковой магнитострикционный преобразователь (например, модель ПМС1-1), рабочая частота которого составляла 22±1,0 кГц, максимальная электрическая мощность 1,2 кВт, паспортная амплитуда смещения в выходном сечении без акустической нагрузки не менее 10 мкм. Преобразователь был снабжен электромагнитным датчиком амплитуды колебаний. Выходной диаметр преобразователя 35 мм. Для осуществления диспергирования ультразвуковой магнитострикционный преобразователь подсоединяли к ультразвуковому электрическому генератору максимальной электрической мощностью 3,0 кВт, питанием 220 В. Рабочая частота ультразвукового генератора 22±1,0 кГц.

В результате была получена однородная, устойчивая во времени, суспензия черного цвета диспергированных нанотрубок в фурфуролацетоновой смоле. Вязкость полученных композиций колебалась в диапазоне от 120 до 10000 сП в зависимости от концентрации вводимых в фурфуролацетоновую смолу УНТ.

В итоге полученное связующее может быть использовано в качестве активного разбавителя для эпоксидных или других смол при введении в них УНТ.

Класс C08L63/00 Композиции эпоксидных смол; композиции производных эпоксидных смол

полимерная композиция для герметизации пьезокерамических приемоизлучающих гидроакустических устройств -  патент 2529542 (27.09.2014)
термоотверждающаяся композиция эпоксидной смолы и полупроводниковое устройство -  патент 2528849 (20.09.2014)
прямая заливка -  патент 2528845 (20.09.2014)
полимерная композиция -  патент 2528681 (20.09.2014)
стабилизаторы для полимеров, содержащих бром алифатического присоединения -  патент 2528677 (20.09.2014)
растворимый в воде амин и его применение -  патент 2528335 (10.09.2014)
эпоксидное связующее для полимерных композиционных материалов -  патент 2527086 (27.08.2014)
использование полимеризуемых смол, характеризующихся низким газовыделением в вакууме, для изготовления композитных материалов, предназначенных для использования в космосе -  патент 2526973 (27.08.2014)
заливочный состав для пожаробезопасного остекления -  патент 2522335 (10.07.2014)
эпоксидный компаунд -  патент 2521588 (27.06.2014)

Класс C08K3/04 углерод

лист, характеризующийся высокой проницаемостью по водяному пару -  патент 2526617 (27.08.2014)
композиция на основе вспениваемых винилароматических полимеров с улучшенной теплоизоляционной способностью, способы ее получения и вспененное изделие, полученное из этой композиции -  патент 2526549 (27.08.2014)
шина, содержащая слой-хранилище антиоксиданта -  патент 2525596 (20.08.2014)
антифрикционный полимерный композиционный материал -  патент 2525492 (20.08.2014)
содержащий древесный уголь пластмассовый упаковочный материал и способ его изготовления -  патент 2525173 (10.08.2014)
огнестойкая резиновая смесь -  патент 2522627 (20.07.2014)
композиции гбнк с очень высокими уровнями содержания наполнителей, имеющие превосходную обрабатываемость и устойчивость к агрессивным жидкостям -  патент 2522622 (20.07.2014)
морозостойкая резиновая смесь -  патент 2522610 (20.07.2014)
полимерная композиция для радиаторов охлаждения светоизлучающих диодов (сид) и способ ее получения -  патент 2522573 (20.07.2014)
композиционный полимерный антифрикционный материал на основе полиамида -  патент 2522106 (10.07.2014)

Класс C08J3/28 обработка волновой энергией или облучением частицами

способ улучшения водно-физических свойств почв -  патент 2527215 (27.08.2014)
пленки на основе сшитых полимеров и изготовленные из них изделия -  патент 2520209 (20.06.2014)
способ получения металл-полимерного композитного материала для радиотехнической аппаратуры -  патент 2506224 (10.02.2014)
композиция герметизирующего средства, отверждаемая высокоактивным излучением, и деталь с герметизирующим слоем -  патент 2505576 (27.01.2014)
способ получения нанодисперсного фторопласта -  патент 2501815 (20.12.2013)
способ приготовления наносуспензии для изготовления полимерного нанокомпозита -  патент 2500695 (10.12.2013)
слоистый материал, покрытый радиационно отверждаемой печатной краской или печатным лаком, и формованная деталь -  патент 2497859 (10.11.2013)
устойчивый к окислению высокосшитый сверхвысокомолекулярный полиэтилен -  патент 2495054 (10.10.2013)
способ получения порошка капсулированного полимерного материала (варианты) и устройство для его реализации (варианты) -  патент 2470956 (27.12.2012)
способ уменьшения ползучести и увеличения модуля упругости сверхвысокомолекулярных высокопрочных высокомодульных полиэтиленовых волокон -  патент 2467101 (20.11.2012)

Класс B82B3/00 Изготовление или обработка наноструктур

Наверх