ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

магнитооптический материал

Классы МПК:C30B29/28 с формулой A3Me5O12, где A - редкоземельный металл, а Me - Fe, Ga, Sc, Cr, Co или Al, например гранаты
C30B19/12 характеризуемое подложкой
H01F10/24 гранатами
H01F10/28 отличающиеся составом подложки
G02F1/09 основанные на магнитооптических приборах, обладающих эффектом Фарадея
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" (RU)
Приоритеты:
подача заявки:
2012-12-28
публикация патента:

Изобретение относится к области магнитной микроэлектроники, в частности к прикладной магнитооптике, и может быть использовано для записи информации как в цифровом, так и в аналоговом режимах. Магнитооптический материал представляет собой эпитаксиальную монокристаллическую пленку феррита-граната состава (YBi) 3(FeGa)5O12, нарощенную на подложке немагнитного граната с высоким значением параметра решетки магнитооптический материал, патент № 2522594 , при этом эпитаксиальная пленка содержит 0,1-0,4 формульных единиц ионов Mg2+. Подложка немагнитного граната может быть выполнена из (GdCa)3(GaMgZr)5O 12, или Ca3(NbLi)2Ga3O 12, или Ca3(NbMg)2Ga3O 12, или Ca3(NbZr)2Ga3O 12. Предложенный материал имеет магнитооптическую добротность 56-60 град/дБ при магнитооптический материал, патент № 2522594 =0,8 мкм, 350-380 град/дБ при магнитооптический материал, патент № 2522594 =1,3 мкм, коэрцитивную силу порядка 2,5-15,3 Э и позволяет получать методом термомагнитной записи высококонтрастные изображения. 1 з.п. ф-лы, 2 табл., 3 ил., 4 пр.

Рисунки к патенту РФ 2522594

магнитооптический материал, патент № 2522594 магнитооптический материал, патент № 2522594 магнитооптический материал, патент № 2522594

Изобретение относится к области магнитной микроэлектроники, в частности, к прикладной магнитооптике и может быть использовано для записи термомагнитооптическим способом информации как в цифровом, так и в аналоговом режимах.

Материалы для термомагнитооптических запоминающих устройств должны обладать повышенной коэрцитивностью.

В настоящее время известен магнитооптический материал для термомагнитной записи информации, представляющий собою монокристаллические пластинки ортоферрита иттрия YFeO3. Высококоэрцитивное состояние в данном материале индуцируется путем механической обработки (шлифовкой и полировкой) (см.:

1). Балбашов A.M., Червоненкис А.Я. Магнитные материалы для микроэлектроники. - М.: Энергия, 1979. - 216 с.;

2). Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. - М.: Энергоатомиздат, 1990. - 320 с.).

Однако, данный материал обладает рядом недостатков:

а). поскольку качественные кристаллы ортоферрита иттрия можно вырастить только методом безтигельной зонной плавки (а метод позволяет получать кристаллы данного состава небольших размеров), получаются пластинки малой площади, что ограничивает возможности записи информации;

б). разрешающая способность среды для магнитооптической записи определяется минимальным размером устойчивого момента (см. Балбашов A.M., Червоненкис А.Я. Магнитные материалы для микроэлектроники. - М.: Энергия, 1979. - с.36). Так как пластины YFeO3 из-за малого значения намагниченности насыщения 4магнитооптический материал, патент № 2522594 Ms и большой толщины (~100 мкм) обладают крупной доменной структурой, это снижает их разрешающую способность;

в). плотность мощности, необходимая для термомагнитной записи информации, определяется выражением (см. Балбашов A.M., Червоненкис А.Я. Магнитные материалы для микроэлектроники. - М.: Энергия, 1979. - с.37):

I=4магнитооптический материал, патент № 2522594 2Ktмагнитооптический материал, патент № 2522594 T/d2·[1-exp(-магнитооптический материал, патент № 2522594 t)],

где: K - коэффициент теплопроводности среды;

магнитооптический материал, патент № 2522594 Т=TH0 (TH - температура нагрева материала, Т0 - температура окружающей среды);

t - толщина материала (пластины, пленки) для записи информации;

магнитооптический материал, патент № 2522594 - коэффициент оптического поглощения материала для записи информации;

d - размер записываемого бита информации.

Таким образом, с точки зрения энергетики термомагнитной записи информации предпочтительно, чтобы материал - среда записи обладал низкой теплопроводностью K, высоким коэффициентом оптического поглощения магнитооптический материал, патент № 2522594 , малой толщиной t и для записи информации требовал малого значения магнитооптический материал, патент № 2522594 Т. Лучше этим требованиям по сравнению с пластинками YFeO 3 удовлетворяют магнитные диэлектрические пленки.

Еще одним термомагнитооптическим материалом служат высококоорцитивные эпитаксиальные пленки Bi-содержащих гранатов, выращенные на подложках Gd3Ga5O12. (см.:

1). Балбашов A.M., Червоненкис А.Я. Магнитные материалы для микроэлектроники. - М.: Энергия, 1979. - 216 с.;

2). Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. - М.: Энергоатомиздат, 1990. - 320 с.).

Повышенная коэрцитивность в таких пленках создается сеткой дислокации несовпадения, служащей потенциальным рельефом для движущейся доменной пленки (см. Индуцированная коэрцитивность в монокристаллах ортоферритов и эпитаксиальных пленках гранатов / А.М. Балбашов, А.Я. Червоненкис, М.Л. Шупегин, А.П. Черкасов // Микроэлектроника. 1982, т.11. Вып.2. - С.126-133).

Недостатки данного материала:

а). так как пленки выращивают на подложках Gd3Ga5O12 , концентрация в них ионов Bi3+ - небольшая, что не позволяет получить высокой магнитооптической добротности и существенно снижает возможности материала;

б). генерация дислокации в данном материале производится за счет большой разницы в параметрах решетки пленки и ее подложки (магнитооптический материал, патент № 2522594 а/амагнитооптический материал, патент № 2522594 0,005), однако в этом случае пленки растут далеко не всегда, а если растут, то качество их - низкое.

Близким к предлагаемому материалу является магнитооптическая среда, представляющая собою эпитаксиальную монокристаллическую пленку феррита-граната (YBi)3(FeGa)5O12, нарощенную на подложке немагнитного граната с высоким значением параметра решетки, например, (GdCa)3(GaMgZr)5O 12, Ca3(NbLi)2Ga3O 12, Ca3(NbMg)2Ga3O 12 или Ca3(NbZr)2Ga3O 12 (см. Рандошкин В.В., Червоненкис А.Я. Прикладная магнитооптика. - М.: Энергоатомиздат, 1990. - 320 с.). Недостаток данного материала - низкое значение коэрцитивной силы Нс, что делает его непригодным для термомагнитооптической записи.

Наиболее близким (прототипом) к предлагаемому материалу является магнитооптическая среда, представляющая собою эпитаксиальную монокристаллическую пленку феррита-граната (YBi)3(FeGa) 5O12 (пленка нарощена на подложке немагнитного граната с высоким значением параметра решетки, например, (GdCa) 3(GaMgZr)5O12, Ca3(NbLi) 2Ga3O12, Ca3(NbMg) 2Ga3O12 или Ca3(NbZr) 2Ga3O12)) с содержанием 0,1-0,4 форм. ед. ионов Са2+ (см. Костишин В.Г., Кожитов Л.В., Медведь В.В. и др. Магнитооптический материал. Патент РФ № 2431205). Однако, и данный материал не лишен недостатков. В частности, из-за большого значения ионного радиуса иона Ca 2+ (r=1,12 Å) в материал уменьшается вхождение ионов Bi3+ (и ионы Ca2+, и ионы Bi3+ входят в додекаэдрическую подрешетку граната), что понижает магнитооптическую добротность материала. При введении же необходимого количества кальция и висмута (в максимальном количестве) пленки часто оказываются в напряженном состоянии, что ухудшает их эксплуатационные параметры, в частности, приводит к росту оптического поглощения и уменьшает магнитооптическую добротность.

Технический результат - повышение магнитооптической добротности материала при сохранении его существующих достоинств.

Технический результат достигается тем, что в процессе выращивания в раствор-расплав добавляется определенное количество оксида магния MgO марки ОСЧ. В результате получаются пленки, легированные ионами Mg2+ ((YBi)3(FeGa)5O12:Mg2+ ). Последние обладают теми же достоинствами, что и пленки (YBi) 3(FeGa)5O12:Ca2+ (ионы Mg2+ аналогично ионам Са2+ приводят к интенсивному росту коэрцитивной силы Hc), но за счет меньшего ионного радиуса ионов Mg2+ (r=0,74 Å), входящих в октаэдрическую подрешетку, появляется возможность ввести большее количество ионов Bi3+ и таким образом повысить магнитооптическую добротность материала.

Сущность изобретения состоит в следующем. Ионы магния, обладая меньшим значением ионного радиуса по сравнению с ионами кальция, входят в октаэдрическую подрешетку пленки. Кроме того, за счет меньшего значения ионного радиуса ионы магния (по сравнению с ионами кальция) дают меньший вклад в значение параметра решетки пленки. Последний факт, а также тот факт, что при использовании ионов магния большая часть додекаэдрических узлов оказывается свободной, позволяет получить пленки (YBi) 3(FeGa)5O12 с более высокой концентрацией ионов висмута. А поскольку, в основном, именно ионы висмута в указанных материалах ответственны за фарадеевское вращение, то пленки (YBi)3(FeGa)5O12: Mg 2+ будут обладать более высокой магнитооптической добротностью по сравнению с пленками (YBi)3(FeGa)5O 12: Са2+. Что касается механизма индуцирования высококоэрцитивного состояния, то при использовании ионов магния он - такой же, как и при использовании ионов кальция.

Известно, что ионы двухвалентной примеси в эпитаксиальных монокристаллических пленках ферритов-гранатов (ЭМПФГ) при отсутствии ионов валентности выше «3+» компенсируются, преимущественно, кислородными вакансиями (см.: Костишин В.Г. Модификация свойств эпитаксиальных монокристаллических пленок ферритов-гранатов (YSmLuCa)3 (FeGe)5O12 воздействием магнитооптический материал, патент № 2522594 -квантов Со60. Диссертация на соискание ученой степени кандидата физ.-мат. наук. М.: МИСиС, 1995. - 196 с.).

Кислородные вакансии в оксидных кристаллах могут находиться в трех зарядовых состояниях: магнитооптический материал, патент № 2522594 , магнитооптический материал, патент № 2522594 (F+-центр) и магнитооптический материал, патент № 2522594 (F-центр). Нейтральные кислородные вакансии (F-центры) объединяются в кластеры, «тормозящие» движение доменной стенки, что приводит к росту коэрцитивной силы Hc (см.:

1) Костишин В.Г. Модификация свойств эпитаксиальных монокристаллических пленок ферритов-гранатов (YSmLuCa)3 (FeGe)5O12 воздействием магнитооптический материал, патент № 2522594 -квантов Со60. Диссертация на соискание ученой степени кандидата физ.-мат. наук. М.: МИСиС, 1995. - 196 с.;

2) Ткалич А.К. Влияние точечных дефектов и концентрационных неоднородностей на свойства монокристаллических пленок магнитных гранатов. Диссертация на соискание ученой степени кандидата физ.-мат. наук. М.: МИСиС, 1992. - 153 с.).

При проведении процесса записи бита информации термомагнитооптическим способом локальный участок магнитной пленки нагревается лазерным или электронным лучом до температуры Кюри. Для записи обычно используют дополнительное магнитное поле смещения, ориентированное против направления намагниченности среды. Если результирующее магнитное поле (поле смещения плюс размагничивающее поле) меньше, чем коэрцитивная сила при комнатной температуре, но больше, чем коэрцитивная сила при температуре записи, то в результате локального нагрева участка пленки лазерным излучением намагниченность в этом месте переориентируется по направлению приложенного поля и останется в этом направлении после остывания среды. Направление намагниченности окружающих ненагретых областей не изменяется, так как для них результирующее поле меньше коэрцитивной силы. В результате, в поляризованном свете мы сможем наблюдать светлый участок на темном фоне или наоборот. То есть получим бит информации.

Следует отметить, что под воздействием температуры F-центры в нагретом участке ионизируются и переходят в F+-центры, что существенно понизит оптическое поглощение термически обработанного участка и, тем самым, повысит контраст записанного изображения.

Таким образом, предлагаемый материал по сравнению с прототипом обладает следующим отличительным признаком:

1). Эпитаксиальная пленка содержит 0,1-0,4 формульных единиц ионов Mg2+.

Пределы содержания ионов Mg2+ (0,1-0,4) форм. ед. выбраны из следующих соображений. При NMg2+<0,1 ф.е пленки обладают недостаточной величиной Нс и не годятся для термомагнитной записи. При NMg2+>0,4 ф.е начинает существенно ухудшаться качество пленок.

Магнитооптическая добротность определяется из выражения:

магнитооптический материал, патент № 2522594 ,

где магнитооптический материал, патент № 2522594 F - удельное фарадеевское вращение;

магнитооптический материал, патент № 2522594 - оптическое поглощение;

В таблицах 1-2 представлены результаты зависимости магнитооптической добротности при магнитооптический материал, патент № 2522594 =0,8 и 1,3 мкм ЭМПФГ (YBi)3(FeGa)5 O12: Mg2+ выращенных на подложке немагнитного граната с высоким значением параметра решетки a=12,380Å-12,560Å от концентрации ионов Mg2+. Представленные результаты приведены в сравнении с зависимостью магнитооптической добротности от концентрации ионов Са2+ прототипа.

магнитооптический материал, патент № 2522594

магнитооптический материал, патент № 2522594

Как видно из таблиц 1 и 2, наилучшие результаты магнитооптической добротности получаются при легировании ЭМПФГ (YBi)3(FeGa)5O12 ионами Mg2+.

Следует отметить еще одно важное преимущество предлагаемого материала. Поскольку в данном материале при нагреве кроме перемагничивания происходит также существенное уменьшение оптического поглощения, этот факт можно использовать для одновременной записи и оптической, и магнитооптической информации.

На Фиг.1 представлена зависимость коэрцитивной силы Hc ЭМПФГ (YBi)3(FeGa)5O 12: Mg2+, выращенных на подложках (GdCa) 3(GaMgZr)5O12 (параметр решетки a=12,490 Å) кристаллографической ориентации (111) от концентрации ионов Mg2+. С ростом концентрации магния от 0,1 форм. ед. до 0,4 форм. ед., значение Hc пленок интенсивно растет и при максимальной концентрации ионов Mg2+ может равняться 15,3 Э и более.

На Фиг.2 и 3 представлены зависимости магнитооптической добротности магнитооптический материал, патент № 2522594 ЭМПФГ (YBi)3(FeGa)5O12 : Mg2+, выращенных на подложках (GdCa)3 (GaMgZr)5O12 (параметр решетки а=12,490 Å) кристаллографической ориентации (111) от концентрации ионов Mg2+. С ростом концентрации магния от 0,1 форм. ед. до 0,4 форм. ед., значение магнитооптический материал, патент № 2522594 пленок интенсивно растет и при максимальной концентрации ионов Mg2+ может равняться 60 град/дБ при магнитооптический материал, патент № 2522594 =0,8 мкм (Фиг.2) и магнитооптический материал, патент № 2522594 =380 град/дБ при магнитооптический материал, патент № 2522594 =1,3 мкм (Фиг.3).

Пример 1. В качестве объекта использовалась ЭМПФГ (YBi)3(FeGa)5O 12: Mg2+ (NMg2+=0,1 форм. ед.). Пленка была выращена методом жидкофазной эпитаксии из раствора-расплава на основе PbO-Bi2O3-B2O 3 на подложке (GdCa)3(GaMgZr)5O 12 (параметр решетки а=12,380 Å) кристаллографической ориентации (111). Температура роста пленки составляла 750°C. Магнитные параметры пленки: поле эффективной магнитной кристаллографической анизотропии Hk=4520 Э, коэрцитивная сила Hc =3,1 Э, температура Кюри-Нееля TN=408 K, магнитооптическая добротность магнитооптический материал, патент № 2522594 =56 град/дБ при магнитооптический материал, патент № 2522594 =0,8 мкм, магнитооптический материал, патент № 2522594 =350 град/дБ при магнитооптический материал, патент № 2522594 =1,3 мкм.

Термомагнитная запись информации в пленке проводилась с помощью полупроводникового лазера, используемая мощность лазерного излучения составляла Р=10 МВт. Качество записанного изображения контролировалось в поляризационном микроскопе. Наблюдалось качественное (высококонтрастное, с ровными контурами) изображение в виде областей круглой формы диаметром 10 мкм. Наблюдения за полученным изображением в течение двух месяцев не обнаружили ухудшения его качества.

Пример 2. В качестве объекта использовалась ЭМПФГ (YBi)3(FeGa)5O 12: Mg2+ (NMg2+=0,2 форм. ед.). Пленка была выращена методом жидкофазной эпитаксии из раствора-расплава на основе PbO-Bi2O3-B2O 3 на подложке (GdCa)3(GaMgZr)5O 12 (параметр решетки а=12,490 Å) кристаллографической ориентации (111). Температура роста пленки составляла 755°C. Магнитные параметры пленки: поле эффективной магнитной кристаллографической анизотропии Hk=4570 Э, коэрцитивная сила Hc =6,8 Э, температура Кюри-Нееля TN=407 K, магнитооптическая добротность магнитооптический материал, патент № 2522594 =57,5 град/дБ при магнитооптический материал, патент № 2522594 =0,8 мкм, магнитооптический материал, патент № 2522594 =360,1 град/дБ при магнитооптический материал, патент № 2522594 =1,3 мкм.

Термомагнитная запись информации в пленке проводилась с помощью полупроводникового лазера, используемая мощность лазерного излучения составляла Р=10 МВт. Качество записанного изображения контролировалось в поляризационном микроскопе. Наблюдалось качественное (высококонтрастное, с ровными контурами) изображение в виде областей круглой формы диаметром 10 мкм. Наблюдения за полученным изображением в течение двух месяцев не обнаружили ухудшения его качества.

Пример 3. В качестве объекта использовалась ЭМПФГ (YBi)3(FeGa)5O 12: Mg2+ (NMg2+=0,3 форм. ед.). Пленка была выращена методом жидкофазной эпитаксии из раствора-расплава на основе PbO-Bi2O3-B2O 3 на подложке (GdCa)3(GaMgZr)5O 12 (параметр решетки а=12,550 Å) кристаллографической ориентации (111). Температура роста пленки составляла 750°C. Магнитные параметры пленки: поле эффективной магнитной кристаллографической анизотропии Hk=4700 Э, коэрцитивная сила Hc =10,0 Э, температура Кюри-Нееля TN=402 K, магнитооптическая добротность магнитооптический материал, патент № 2522594 =59 град/дБ при магнитооптический материал, патент № 2522594 =0,8 мкм, магнитооптический материал, патент № 2522594 =370 град/дБ при магнитооптический материал, патент № 2522594 =1,3 мкм.

Термомагнитная запись информации в пленке проводилась с помощью полупроводникового лазера, используемая мощность лазерного излучения составляла Р=10 МВт. Качество записанного изображения контролировалось в поляризационном микроскопе. Наблюдалось качественное (высококонтрастное, с ровными контурами) изображение в виде областей круглой формы диаметром 8,25 мкм. Наблюдения за полученным изображением в течение двух месяцев не обнаружили ухудшения его качества.

Пример 4. В качестве объекта использовалась ЭМПФГ (YBi)3(FeGa)5O 12: Mg2+ (NMg2+=0,4 форм. ед.). Пленка была выращена методом жидкофазной эпитаксии из раствора-расплава на основе PbO-Bi2O3-B2O 3 на подложке (GdCa)3(GaMgZr)5O 12 (параметр решетки а=12,560 Å) кристаллографической ориентации (111). Температура роста пленки составляла 745°C. Магнитные параметры пленки: поле эффективной магнитной кристаллографической анизотропии Hk=4675 Э, коэрцитивная сила Hc =15,3 Э, температура Кюри-Нееля TN=400 K, магнитооптическая добротность магнитооптический материал, патент № 2522594 =60 град/дБ при магнитооптический материал, патент № 2522594 =0,8 мкм, магнитооптический материал, патент № 2522594 =380 град/дБ при магнитооптический материал, патент № 2522594 =1,3 мкм.

Термомагнитная запись информации в пленке проводилась с помощью полупроводникового лазера, используемая мощность лазерного излучения составляла Р=10 МВт. Качество записанного изображения контролировалось в поляризационном микроскопе. Наблюдалось качественное (высококонтрастное, с ровными контурами) изображение в виде областей круглой формы диаметром 7,75 мкм. Наблюдения за полученным изображением в течение двух месяцев не обнаружили ухудшения его качества.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Магнитооптический материал, представляющий собою эпитаксиальную монокристаллическую пленку феррита-граната состава (YBi) 3(FeGa)5O12, нарощенную на подложке немагнитного граната с высоким значением параметра решетки магнитооптический материал, патент № 2522594 , отличающийся тем, что эпитаксиальная пленка содержит 0,1-0,4 формульных единиц ионов Mg2+.

2. Материал по п.1, отличающийся тем, что подложка немагнитного граната выполнена из (GdCa)3(GaMgZr)5O12, или Ca3(NbLi)2Ga3O12, или Ca3(NbMg)2Ga3O12 , или Ca3(Nb Zr)2Ga3O12 .


Скачать патент РФ Официальная публикация
патента РФ № 2522594

patent-2522594.pdf
Патентный поиск по классам МПК-8:

Класс C30B29/28 с формулой A3Me5O12, где A - редкоземельный металл, а Me - Fe, Ga, Sc, Cr, Co или Al, например гранаты

Патенты РФ в классе C30B29/28:
монокристалл граната, оптический изолятор и оптический процессор -  патент 2528669 (20.09.2014)
монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор -  патент 2527082 (27.08.2014)
способ получения алюмоиттриевого граната, легированного редкоземельными элементами -  патент 2503754 (10.01.2014)
способ выращивания алюмо иттриевого граната, легированного ванадием -  патент 2501892 (20.12.2013)
способ соединения деталей из тугоплавких оксидов -  патент 2477342 (10.03.2013)
прозрачный керамический материал и способ его получения -  патент 2473514 (27.01.2013)
лазерный материал -  патент 2395883 (27.07.2010)
лазерный материал -  патент 2391754 (10.06.2010)
pr-содержащий сцинтилляционный монокристалл, способ его получения, детектор излучения и устройство обследования -  патент 2389835 (20.05.2010)
способ получения оптически прозрачных монокристаллов тербий-галлиевого граната -  патент 2328561 (10.07.2008)

Класс C30B19/12 характеризуемое подложкой

Класс H01F10/24 гранатами

Класс H01F10/28 отличающиеся составом подложки

Класс G02F1/09 основанные на магнитооптических приборах, обладающих эффектом Фарадея

Патенты РФ в классе G02F1/09:
монокристалл граната, оптический изолятор и оптический процессор -  патент 2528669 (20.09.2014)
монокристалл, способ его изготовления, оптический изолятор и использующий его оптический процессор -  патент 2527082 (27.08.2014)
оптический вентиль с компенсацией термонаведенной деполяризации для лазеров большой мощности -  патент 2458374 (10.08.2012)
способ генерации э.д.с. посредством управления магнитной проницаемостью ферромагнетика при помощи света и устройство для его осуществления -  патент 2444836 (10.03.2012)
магнитооптический материал -  патент 2431205 (10.10.2011)
магнитооптический преобразователь, способ изготовления магнитооптического преобразователя и способ визуализации неоднородного магнитного поля -  патент 2399939 (20.09.2010)
оптический вентиль для лазеров большой мощности -  патент 2342688 (27.12.2008)
способ и устройство для изменения состояния поляризации света -  патент 2303801 (27.07.2007)
магнитооптический модулятор электромагнитного излучения на эффекте упругоиндуцированного перемагничивания -  патент 2266552 (20.12.2005)
оптический вентиль -  патент 2256945 (20.07.2005)


Наверх