способ определения дисперсности водогазовой смеси

Классы МПК:E21B43/22 с применением химикалий или бактерий
G01N13/02 исследование поверхностного натяжения жидкостей 
G01N15/02 определение размеров частиц или распределения их по размерам
Автор(ы):, , , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Российская инновационная топливно-энергетическая компания" (ОАО "РИТЭК") (RU)
Приоритеты:
подача заявки:
2012-10-19
публикация патента:

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси перед закачкой в пласт. Техническим результатом является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для непрозрачной дисперсионной среды. Способ включает получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении. Перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость способ определения дисперсности водогазовой смеси, патент № 2522486 Р от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (способ определения дисперсности водогазовой смеси, патент № 2522486 Р) от относительной доли текущего значения массы свободного газа m/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле:

способ определения дисперсности водогазовой смеси, патент № 2522486

где способ определения дисперсности водогазовой смеси, патент № 2522486 - межфазное натяжение, и вычисляется функция распределения радиуса пузырьков. 3 з.п. ф-лы, 1 пр., 1 табл.

Формула изобретения

1. Способ определения дисперсности водогазовой смеси под давлением, включающий получение водогазовой смеси под повышенным давлением, отбор пробы водогазовой смеси и перевод ее в измерительную емкость при том же давлении, отличающийся тем, что перед проведением измерения определяется объем измерительной емкости, а в процессе измерения непрерывно регистрируется изменение давления свободного газа внутри измерительной емкости и объем свободного газа, соответствующее ему приращение объема свободного газа, определятся общее количество газа, содержащегося в отобранной пробе, затем определяется зависимость способ определения дисперсности водогазовой смеси, патент № 2522486 Р от объема свободного газа в емкости, которая затем пересчитывается в зависимость изменения давления (способ определения дисперсности водогазовой смеси, патент № 2522486 Р) от относительной доли текущего значения массы свободного газа m/mг, где mг - общее количество газа mг, содержащегося в отобранной пробе, miг - текущее значение массы свободного газа, далее определятся радиус газовых пузырьков, содержащихся в доле текущего значения массы свободного газа по формуле:

способ определения дисперсности водогазовой смеси, патент № 2522486

где способ определения дисперсности водогазовой смеси, патент № 2522486 - межфазное натяжение,

и вычисляется функция распределения радиуса пузырьков.

2. Способ по п.1, отличающийся тем, что количество газа, содержащегося в объеме, рассчитывается по уравнению Менделеева-Клайперона:

способ определения дисперсности водогазовой смеси, патент № 2522486

где ni - количество молей газа,

R - универсальная газовая постоянная,

Т - абсолютная температура,

Р0 -начальное давление газа в измерительной емкости,

способ определения дисперсности водогазовой смеси, патент № 2522486 Рi - прирост давления,

способ определения дисперсности водогазовой смеси, патент № 2522486 Vi - увеличение объема газа.

3. Способ по п.1, отличающийся тем, что общее количество газа mг , содержащегося в отобранной пробе, рассчитывается по уравнению

mг=Mn0,

где М - среднее значение молекулярной массы закачиваемого газа, а n0 - количество молей газа в пробе.

4. Способ по п.1, отличающийся тем, что количество молей газа в пробе, рассчитывается по формуле:

способ определения дисперсности водогазовой смеси, патент № 2522486

где способ определения дисперсности водогазовой смеси, патент № 2522486 РК - конечное приращение давления;

способ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486 Vi - общий объем выделившегося газа.

Описание изобретения к патенту

Изобретение относится к нефтедобывающей промышленности и может быть использовано для определения параметров мелкодисперсной водогазовой смеси (МДВГС) перед закачкой в пласт.

Установлено, что добычу остаточной нефти из заводненных пластов обеспечивает смешивающее вытеснение углеводородными газами, при котором достигается сверхнизкое межфазное натяжение на контакте фаз. Такие условия возникают при вытеснении нефти агентами, которые практически полностью устраняют отрицательное влияние капиллярных сил на вытеснение нефти. Технологический процесс, использующий попутный нефтяной газ (ПНГ) для закачки в нефтенасыщенный пласт, решает целый ряд промышленно и экологически значимых проблем. Одна из перспективных областей применения ПНГ - обратная закачка в пласт под высоким давлением для повышения нефтеотдачи и интенсификации добычи нефти. Обратная закачка извлеченного газа используется в качестве вторичного способа добычи нефти и, несмотря на дополнительные расходы, связанные с необходимостью его очистки и компремирования, в то же время продлевает срок эксплуатации нефтяного месторождения, обеспечивая дополнительные объемы добычи нефти. Таким образом, газ можно многократно использовать в течение всего периода активной эксплуатации нефтяного месторождения. Известен способ разработки обводненной нефтяной залежи на поздней стадии, включающий закачку рабочего агента через нагнетательные скважины в нестационарном режиме, при этом периодически через нагнетательные скважины закачивают водогазовую смесь, состоящую из пластовой воды и диспергированного в ней очищенного нефтяного газа с размерами пузырьков до 5 мкм (пат РФ № 2236573). Известен также способ разработки нефтяной залежи на поздней стадии, включающий установление характера распределения текущих нефтенасыщенных толщин или текущей нефтенасыщенности пласта-коллектора, периодическую эксплуатацию высокообводненных скважин, находящихся в зонах пониженных значений нефтенасыщенных толщин или нефтенасыщенности, эксплуатацию скважин, находящихся в зонах повышенных значений нефтенасыщенных толщин или коэффициента нефтенасыщения, на форсированных режимах отбора жидкости, закачку через нагнетательные скважины водогазовой дисперсной смеси (ВГДС), состоящей из пластовой воды и диспергированного в ней очищенного нефтяного газа, отличающийся тем, что закачку ВГДС осуществляют, периодически изменяя степень ее дисперсности: сначала - закачку ВГДС с размерами газовых пузырьков, соизмеримыми с размером поровых каналов, промытых водой, до тех пор, пока обводненность добываемой продукции снизится на 2-6,1%, затем - закачку ВГДС с размерами газовых пузырьков, соизмеримыми с размерами капиллярных и субкапиллярных нефтесодержащих поровых каналов, до тех пор, пока обводненность добываемой продукции после указанного снижения повысится на 0,5-2,5%, сохраняя указанное периодическое изменение степени дисперсности ВГДС в течение всего периода ее закачки (пат. РФ № 2318997).

Смешение нефтяного газа с пластовой водой обеспечивается инжекцией пластовой воды нефтяным газом: газ, поступающий под большим давлением, подсасывает воду, распыляясь в ней мелкими пузырьками. Для большей степени диспергирования газа используется различные диспергаторы. Однако настройка каждого диспергатора для получения МДВГС требует калибровки, т.е. исследования зависимости распределения размеров пузырьков от настройки режимов работы эжектора и диспергатора в промысловых условиях.

Вместе с тем, в настоящее время отсутствуют надежные способы измерения размеров газовых пузырьков в жидкости при высоком газосодержании и наличии в анализируемой смеси посторонних включений (пыли, окалины, капель, несмешивающихся с водой жидкости и т.п.)

Известные методы определения дисперсности водогазовых смесей (акустические и оптические) пригодны для проведения измерений в тщательно очищенных от примесей жидкостях в достаточно узких диапазонах газонасыщенности (Акустический журнал, 1961, т.7, № 4, стр.421-427; Всесоюзный симпоз. по физике акустико-гидродинамических явлений и оптоакустике. Тезисы докладов. М.: Наука, 1979, стр.42-43; Михалев А.С., Ринкевичюс Б.С., Скорнякова Н.М. Лазерный интерференционный метод определения параметров пузырьков газа, Метрология, 2009, № 9, стр.3-14; Патент РФ № 2037806).

Общим недостатком перечисленных методов измерения и контроля дисперсности водогазовых смесей является невозможность эффективно использовать их в условиях нефтепромысла.

В связи с изложенным основной технической задачей, на решение которой направлено заявляемое изобретение, является создание способа определения размеров газовых пузырьков в жидкости при значительной газонасыщенности, малочувствительного к наличию в системе посторонней дисперсной фазы (загрязнений), и простого устройства для его реализации в условиях нефтепромысла.

Наиболее близким к предлагаемому является способ определения степени дисперсности водогазовой смеси (пены) под давлением, включающий получение водогазовой смеси под повышенным давлением и перевод ее в измерительную емкость при том же давлении. (Васильев В.К., Быкова Т.Н., Маркин А.А. Устойчивость пен под давлением. Нефтепромысловое дело, № 5, 1976, с.27-29).

Недостатком этого способа является необходимость проведения измерений с помощью микроскопической съемки, что требует наличия микроскопа с регистрирующей аппаратурой, что свою очередь исключает возможность проведения измерений в случае непрозрачности дисперсионной (непрерывной) фазы или при наличии в ней посторонних примесей, а также невозможность проведения оперативных измерений в условиях нефтепромысла

Целью предлагаемого изобретения является обеспечение проведения измерения дисперсности водогазовой смеси как для прозрачной, так и для условий с непрозрачной (или загрязненной) дисперсионной среды.

Предлагаемый способ осуществляется следующим образом. Способ основан на экспериментальном факте, заключающемся в том, что при расслоении полидисперсной водогазовой смеси в первую очередь разрушаются наиболее крупные пузырьки. Так как избыточное давление газа в пузырьке способ определения дисперсности водогазовой смеси, патент № 2522486 Р, находящемся в равновесии с жидкостью, связано с размером пузырька r и коэффициентом поверхностного натяжения способ определения дисперсности водогазовой смеси, патент № 2522486 формулой Лапласа:

способ определения дисперсности водогазовой смеси, патент № 2522486

при разрушении пузырьков с размером ri давление в герметичном сосуде с водогазовой смесью увеличится на величину:

способ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486

по мере расслоения водогазовой смеси давление в газовом слое, образующемся над слоем стекающей на дно герметичного сосуда и слоем водогазовой смеси, будет увеличиваться. Регистрируя изменение давления в сосуде и объем газа, можно рассчитать начальное распределение газовых пузырьков по размеру. Конечное значение приращения давления способ определения дисперсности водогазовой смеси, патент № 2522486 РК (после полного расслоения смеси на газ и жидкость) характеризует средневесовой радиус пузырьков в водогазовой смеси в момент отбора пробы и заключения ее в герметичный сосуд, а отношение объема (уровня) жидкости в сосуде к объему, занятому выделившимся газом, водогазовое отношение.

Из линии нагнетания мелкодисперсной водогазовой смеси (МДВГС) при давлении нагнетания Р0 отбирается проба в герметично закрываемую емкость с объемом V0 (по определению МДВГС готовится монодисперсной или с достаточно узким распределением размеров пузырьков). В крышке и дне емкости вмонтированы датчики давления, температуры. Устройство снабжено ультразвуковым измерителем объема, выполненным в виде многолучевого эхолота или УЗИ-сканера, датчик которого размещен в крышке емкости.

В процессе исследования регистрируется изменение давления под крышкой сосуда способ определения дисперсности водогазовой смеси, патент № 2522486 Pi и соответствующее ему приращение объема свободного газа способ определения дисперсности водогазовой смеси, патент № 2522486 Vi. Количество газа, содержащегося в объеме способ определения дисперсности водогазовой смеси, патент № 2522486 V1, рассчитывается по уравнению Менделеева-Клайперона

способ определения дисперсности водогазовой смеси, патент № 2522486

ni - количество молей газа, R - универсальная газовая постоянная, Т - абсолютная температура.

Общее количество газа mг, содержащегося в отобранной пробе, также рассчитывается по уравнению Менделеева-Клайперона способ определения дисперсности водогазовой смеси, патент № 2522486

имея в виду, что mг=Мn 0, где М - среднее значение молекулярной массы закачиваемого газа, а n0 - количество молей газа в пробе, рассчитанное по формуле (3).

В процессе измерений получается зависимость способ определения дисперсности водогазовой смеси, патент № 2522486 Р от объема свободного газа в сосуде. Эта зависимость преобразуется (с использованием приведенных выше соотношений) в зависимость от относительной доли текущего значения массы свободного газа m/mг

способ определения дисперсности водогазовой смеси, патент № 2522486

Дифференцирование последней зависимости позволяет, с использование соотношения (1а), получить распределение размеров газовых пузырьков в МДВГС.

Возможность осуществления заявляемого способа и устройства доказывается использованием в отечественной и зарубежной практике оборудования для нагнетания газа и газожидкостных смесей с использованием насосов объемного вытеснения, наличием серийно выпускаемых высокоточных датчиков давления и температуры, а также прецизионных ультразвуковых сканеров.

Пример реализации способа

Емкость - V0=0,100 м3, газ СН4 (М=16), Р0=50000 Па, способ определения дисперсности водогазовой смеси, патент № 2522486 =0,073н/м

Р (Па)50000 50100 5050051000 515005200052100
способ определения дисперсности водогазовой смеси, патент № 2522486 Р (Па)0 100500 10001500 20002100
ri (мм)способ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486 1,46способ определения дисперсности водогазовой смеси, патент № 2522486 0,29способ определения дисперсности водогазовой смеси, патент № 2522486 0,146способ определения дисперсности водогазовой смеси, патент № 2522486 0,097способ определения дисперсности водогазовой смеси, патент № 2522486 0,073способ определения дисперсности водогазовой смеси, патент № 2522486 0,069
способ определения дисперсности водогазовой смеси, патент № 2522486 Vi 3)0 0,001 0,0030,03 0,070,080,081
Т293 293293 293293 293293
ni (моль)0 0,020,062 0,6281,48 1,711,73
m (грамм)0 0,320,995 10,0423,68 27,3227,68
Mгспособ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486 способ определения дисперсности водогазовой смеси, патент № 2522486 27,68
m/mг0 0,0120,0359 0,3630,856 0,986способ определения дисперсности водогазовой смеси, патент № 2522486
способ определения дисперсности водогазовой смеси, патент № 2522486
Фракция пузырей с радиусом ri, ммспособ определения дисперсности водогазовой смеси, патент № 2522486 1,460,29-1,46 0,146-0,290,097-0,146 0,073-0,097 0,069-0,073
Доля, % 1,22,4 32,7 49,313,0 1,4

Класс E21B43/22 с применением химикалий или бактерий

способ повышения нефтеотдачи в неоднородных, высокообводненных, пористых и трещиновато-пористых, низко- и высокотемпературных продуктивных пластах -  патент 2528805 (20.09.2014)
водные пенообразующие композиции с совместимостью с углеводородами -  патент 2528801 (20.09.2014)
способ снижения вязкости углеводородов -  патент 2528344 (10.09.2014)
применение алк (ен) ил олигогликозидов в процессах с повышенным извлечением нефти -  патент 2528326 (10.09.2014)
усовершенствование способа добычи нефти с использованием полимера без дополнительного оборудования или продукта -  патент 2528186 (10.09.2014)
способ разработки нефтяной залежи -  патент 2528183 (10.09.2014)
способ освоения нефтяных и газовых скважин -  патент 2527419 (27.08.2014)
жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения -  патент 2527102 (27.08.2014)
состав для регулирования разработки неоднородного нефтяного пласта -  патент 2526943 (27.08.2014)
способ повышения добычи нефтей, газоконденсатов и газов из месторождений и обеспечения бесперебойной работы добывающих и нагнетательных скважин -  патент 2525413 (10.08.2014)

Класс G01N13/02 исследование поверхностного натяжения жидкостей 

способ определения плотности металлических расплавов -  патент 2517770 (27.05.2014)
прибор для совместного измерения поверхностного натяжения и работы выхода электрона жидкометаллических систем с участием компонентов с высокой упругостью насыщенного пара металлов и сплавов -  патент 2511277 (10.04.2014)
способ оценки состояния легочного сурфактанта -  патент 2500347 (10.12.2013)
способ определения концентрации и идентификации поверхностно-активных веществ в водных растворах -  патент 2469291 (10.12.2012)
способ определения коэффициента поверхностного натяжения и угла смачивания -  патент 2460987 (10.09.2012)
способ определения плотности высокотемпературных металлических расплавов (варианты) -  патент 2459194 (20.08.2012)
способ определения поверхностного натяжения жидкости -  патент 2431822 (20.10.2011)
способ и устройство для измерения поверхностного натяжения жидкостей -  патент 2416090 (10.04.2011)
способ определения физических свойств жидкости -  патент 2391646 (10.06.2010)
способ и устройство для формирования границы раздела жидкость - жидкость, в частности для измерения поверхностного натяжения -  патент 2390002 (20.05.2010)

Класс G01N15/02 определение размеров частиц или распределения их по размерам

способ автоматического контроля крупности дробленой руды в потоке -  патент 2529636 (27.09.2014)
способ и устройство для оптического измерения распределения размеров и концентраций дисперсных частиц в жидкостях и газах с использованием одноэлементных и матричных фотоприемников лазерного излучения -  патент 2525605 (20.08.2014)
способ замеров параметров выхлопных газов двс -  патент 2525051 (10.08.2014)
устройство для определения размерно-количественных характеристик взвешенных в воде частиц -  патент 2524560 (27.07.2014)
способ определения максимального размера и концентрации субмикронных аэрозольных частиц -  патент 2521112 (27.06.2014)
способ автоматического контроля крупности частиц в потоке пульпы -  патент 2517826 (27.05.2014)
способ оценки параметров факела распыла дисперсионноспособной технологической жидкости и установка для его осуществления -  патент 2516581 (20.05.2014)
устройство анализа загрязненности моторного масла двигателя внутреннего сгорания дисперсными частицами -  патент 2516200 (20.05.2014)
оптический способ регистрации кинетики агрегации частиц в мутных суспензиях -  патент 2516193 (20.05.2014)
способ обработки оптического изображения сферических частиц топливной загрузки керметного стержня -  патент 2513663 (20.04.2014)
Наверх