способ получения сорбента для селективного извлечения цезия

Классы МПК:B01J20/30 способы получения, регенерации или реактивации
B01J20/26 синтетические высокомолекулярные соединения
B01J45/00 Ионный обмен с образованием комплекса или хелатного соединения; использование материала в качестве комплексообразующих или хелатообразующих ионообменников; обработка материала для улучшения комплексообразующих или хелатообразующих ионообменных свойств
Автор(ы):, , , ,
Патентообладатель(и):Закрытое акционерное общество "Аксион-Редкие и Драгоценные Металлы" (RU)
Приоритеты:
подача заявки:
2013-02-13
публикация патента:

Изобретение относится к получению сорбентов. Предложенный способ получения предусматривает нейтрализацию резорцина раствором гидроксида щелочного металла, введение формальдегида и карбоната кальция в реакционную смесь. Осуществляют олигомеризацию реакционной смеси и поликонденсацию с получением гранулированного продукта. Стадии нейтрализации, олигомеризации и поликонденсации проводят в атмосфере инертного газа. Поликонденсацию осуществляют диспергированием олигомерной смеси в слой несмешивающейся с ней жидкости. Затем удаляют карбонат кальция из полученных гранул кислотной обработкой. Сорбент промывают и сушат. Технический результат заключается в получении высокоселективного сферогранулированного сорбента с высокой осмотической стабильностью. 4 з.п.ф-лы.

Формула изобретения

1. Способ получения сорбента для селективного извлечения цезия, включающий нейтрализацию резорцина раствором гидроксида щелочного металла, введение в раствор формальдегида, олигомеризацию реакционной смеси, поликонденсацию, промывку и сушку, отличающийся тем, что в реакционную смесь дополнительно вводят карбонат кальция в количестве 10-40% в расчете на массу продукта поликонденсации, процессы нейтрализации, олигомеризации и поликонденсации проводят в атмосфере инертного газа, при этом поликонденсацию осуществляют диспергированием олигомерной смеси в слой несмешивающейся с ней жидкости с последующим удалением карбоната кальция из гранул путем их обработки раствором кислоты.

2. Способ по п.1, отличающийся тем, что в качестве инертного газа используют азот, аргон, гелий.

3. Способ по п.1, отличающийся тем, что карбонат кальция вводят в реакционную смесь в виде порошка со средним диаметром частиц 10-50 мкм.

4. Способ по п.1, отличающийся тем, что диспергирование олигомерной смеси осуществляют в слой трансформаторного масла при температуре 105-120°C.

5. Способ по п.1, отличающийся тем, что для удаления из гранул карбоната кальция используют растворы соляной, азотной или уксусной кислоты с концентрацией 5-30% масс.

Описание изобретения к патенту

Изобретение относится к области получения ионообменных материалов и комплексообразующих сорбентов и может быть использовано для селективного извлечения цезия из щелочных растворов, а также из жидких отходов атомной промышленности.

В настоящее время для извлечения цезия используются как органические сильнокислотные и слабокислотные катиониты, так и неорганические сорбенты. При этом как органические, так и неорганические материалы имеют как присущие им достоинства, так и свои недостатки.

Известны ионообменные материалы на основе сшитых сополимеров стирола и дивинилбензола, которые используют для извлечения цезия (US 4657731, 14.04.1987).

Известен ионообменник для извлечения цезия, относящийся к сорбентам на основе гидроксибензолформальдегидных смол, где гидроксибензол, такой как фенол или резорцин, реагирует с формальдегидом посредством гидроксиметилирования, затем конденсируется с образованием метиленовой связи между бензольными кольцами в присутствии щелочи или кислоты с получением твердого стекловидного материала, обладающего ионообменными свойствами (US 4423159, 27.12.1983).

Известные материалы имеют ограниченную селективность, тем более, когда в растворе присутствуют высокие концентрации калия и натрия.

Известен селективный сорбент для извлечения цезия, являющейся продуктом взаимодействия поли (гидроксиарилен) - лиганда, формальдегида и любого другого алкокси- или гидроксиароматического соединения или метилированного гидроксиароматического соединения, при 5-100 мольной концентрации поли (гидроксиарилен) - лиганда (RU 2135284, 27.08.1999).

Однако данный сорбент является достаточно дорогим.

В настоящее время проведено сравнительное изучение селективности известных сорбентов по отношению к цезию, содержащемуся в щелочном растворе. Исследованы характеристики таких сорбентов, как фенолформальдегидные смолы (ФФС), резорцинформальдегидные смолы (РОС) и продукты конденсации каликсаренов и резорцинаренов с формальдегидом. В результате исследований сделан вывод, что функциональные группировки каликсареновых и резорцинареновых смол не приводят к увеличению селективности к крупным щелочным катионам по сравнению с обычными ФФС и РФС. (Л.А.Шелковникова и др. Селективность ионообменников для извлечения цезия и рубидия из щелочных растворов. Журнал физической химии, 2013, том 87, № 1, c.112-116).

На основе анализа известного уровня техники перспективным представляется синтез сорбентов на основе продуктов конденсации резорцина и формальдегида, которые по комплексу показателей (цена, емкость, и селективность) являются вполне приемлемыми для производственных нужд.

Наиболее близким по технической сущности и достигаемому результату является способ получения сорбента для селективного извлечения цезия, включающий нейтрализацию резорцина раствором гидроксида щелочного металла, предпочтительно гидроксида калия, введение в раствор формальдегида, олигомеризацию реакционной смеси, поликонденсацию, промывку и сушку (US 5441991, 15.08.1995).

Основными недостатками известного способа являются его низкая технологичность, связанная с отсутствием сферического гранулирования, а также невысокая осмотическая стабильность и низкая селективность к цезию полученного сорбента.

Задачей предлагаемого изобретения является разработка технологичного способа получения селективного к цезию комплексообразующего сорбента в форме гранул с повышенной осмотической стабильностью.

Поставленная задача решается описываемым способом получения сорбента для селективного извлечения цезия, который включает нейтрализацию резорцина раствором гидроксида щелочного металла, введение формальдегида и введение карбоната кальция в количестве 10-40% в расчете на массу продукта поликонденсации, олигомеризацию реакционной смеси, поликонденсацию, промывку и сушку, при этом процессы нейтрализации, олигомеризации и поликонденсации проводят в атмосфере инертного газа и поликонденсацию осуществляют диспергированием олигомерной смеси в слой несмешивающейся с ней жидкости с последующим удалением карбоната кальция из гранул путем их обработки раствором кислоты.

Предпочтительно, в качестве инертного газа используют азот, аргон, гелий.

Предпочтительно, карбонат кальция вводят в реакционную смесь в виде порошка со средним диаметром частиц 10-50 мкм.

Предпочтительно, диспергирование олигомерной смеси осуществляют в слой трансформаторного масла при температуре 105-120°С.

Способ предусматривает, что для удаления из готовых гранул карбоната кальция можно использовать растворы соляной, азотной или уксусной кислоты с концентрацией 5-30% масс.

В объеме вышеуказанной совокупности признаков достигается технический результат, поскольку при проведении процесса в заявленных условиях обеспечивается повышенная степень сшивки полимера и создается необходимое внутреннее поровое пространство, что в свою очередь приводит к повышению селективности сорбента к цезию, увеличению его осмотической стабильности и устойчивости к окислению. Еще одним преимуществом по сравнению с прототипом является получение сорбента в виде сферических гранул, удобных к использованию.

Не ограничивая себя определенной теорией, можно предположить следующее.

Селективность сорбента, вероятно, связана с реакцией комплексообразования за счет замещения воды в координационной сфере катиона цезия фенольными группами. Повышению селективности способствует также ситовой эффект, возникающий за счет сверхсшитости полимерной матрицы, получаемой при использовании в качестве исходного сырья резорцина, обладающего высокой реакционной способностью по отношению к формальдегиду с образованием продуктов с 1, 2, 3, 4 замещением. При этом проведение взаимодействия в инертной атмосфере предотвращает образование побочных продуктов окисления резорцина до хиноидных структур, не способных вступать в реакцию с формальдегидом, и продуктов окисления метилольных групп до карбоксильных групп. Так, образование побочных продуктов в прототипе снижает общую степень сшитости продукта поликонденсации и отрицательно сказывается на гидрофобности сорбента, препятствуя реакции комплексообразования с ионами цезия в растворе.

В способе-прототипе полученный сорбент является полимером с гелевой структурой матрицы, в которой отсутствует свободный внутренний объем, компенсирующий изменение общего объема за счет изменения внутреннего порового пространства, что приводит к механическому разрушению гранул, в особенности при переходах из солевой формы в гидроксильную форму.

В отличие от прототипа сорбент, полученный в соответствии с заявленным способом, имеет свободный внутренний объем. Для образования внутреннего порового пространства на стадии олигомеризации в реакционную массу вводят тонкодисперсный карбонат кальция, который впоследствии удаляют из структуры готового полимера обработкой раствором кислоты.

Все упомянутое выше принципиально отличает полученный нами сорбент и способ его получения от сорбента и способа получения, известного из прототипа.

Принципиально схема получения заявленного сорбента состоит из трех стадий, каждая из которых осуществляется в инертной атмосфере.

В наиболее предпочтительном варианте способ можно осуществить при следующих параметрах на каждой из стадий.

Стадия 1. Олигомеризация резорцина и формальдегида:

- Нейтрализация резорцина гидроксидом калия при мольном соотношении резорцин : КОН, равном 1:(0,9-1), с выдержкой в течение 1 часа при 90°C для полноты протекания реакции нейтрализации.

- Проведение олигомеризации калиевой соли резорцина с формальдегидом при мольном соотношении калиевая соль резорцина : формальдегид, равном 1:4.

- Выдержка олигомерной массы в течение 0,5-1 часа.

- Введение в олигомерную массу тонкодисперсного карбоната кальция в количестве 10-40% от массы готового полимера.

Стадия 2. Гранульная поликонденсация олигомерной резорцинформальдегидной массы:

- Диспергирование олигомерной массы, полученной на первой стадии в дисперсионной среде при температуре 105-120°C и скорости вращения мешалки 150-250 об/мин. В качестве дисперсионной среды наиболее предпочтительно использовать трансформаторное масло ТСО.

- Отверждение гранул в дисперсионной среде при температуре 105-120°C с последующей выдержкой гранул при этой температуре, обеспечивающей сушку и удаление избытка формальдегида

Стадия 3. Отмывка и перевод сорбента в рабочую форму:

- Отделение гранул сорбента от масла на вакуумной воронке и отмывка бензолом в аппарате Сокслета.

- Удаление частиц карбоната кальция из структуры обработкой продукта поликонденсации раствором кислоты.

- Отмывка сорбента раствором 5% гидроксида натрия от непрореагировавших мономеров и олигомерных продуктов реакции.

- Перевод сорбента в рабочую форму обработкой раствором 5%-ной хлористоводородной кислоты.

Предпочтительные параметры стадий связаны со следующим.

Наиболее оптимальное время выдержки олигомерной массы составляет 0,5-1 часа. При уменьшении времени выдержки менее 0,5 часа олигомерная масса не успевает набрать необходимую вязкость, что при последующем гранулировании может привести к образованию мелкодисперсных частиц. При увеличении времени выдержки более 1 часа олигомерная масса становиться слишком вязкой, что затрудняет процесс диспергирования.

Температура дисперсионной среды при проведении гранульной поликонденсации в пределах 105-120°C позволяет получить гранулы оптимального гранулометрического состава 0,3-0,4 мм и добиться оптимального времени сушки.

На стадии гранульной поликонденсации оптимальная скорость вращения мешалки при диспергировании 150-250 об/мин выбрана из расчета получения гранул заданного размера (0,3-0,4 мм).

Наиболее предпочтительное количество вводимого на стадии олигомеризации карбоната кальция составляет 30% от массы полимера. При последующем его удалении из структуры образуется развитая система пор, причем суммарный объем пор в 3 раза превышает объем пор сорбента по прототипу.

Ниже приведен конкретный пример, не ограничивающий, а лишь иллюстрирующий возможность осуществления изобретения.

Пример.

Стадия 1. Олигомеризация резорцина и формальдегида:

В трехгорлую колбу объемом 250 мл, снабженную холодильником и механическим перемешивающим устройством, загружают 87,5 мл дистиллированной воды и 16,5 г резорцина при перемешивании до полного растворения резорцина. Опускают в раствор резорцина трубку для послойной подачи газообразного азота и пропускают азот со скоростью 20 мл/мин. К полученному раствору добавляют раствор 6 М КОН (8,4 г КОН в 25 мл дистиллированной воды). Нагревают реакционную массу до 90°С и выдерживают при этой температуре в течение 1 часа, затем охлаждают до комнатной температуры. В охлажденный раствор сначала в один прием загружают 44 мл 37% формалина, затем загружают 19,8 порошкообразного карбоната кальция и продолжают перемешивание в течение еще 0,5 часа.

Стадия 2. Гранульная поликонденсация олигомерной резорцинформальдегидной массы:

В трехгорлую колбу объемом 1 литр, снабженную механическим перемешивающим устройством, загружают 450 мл трансформаторного масла ТСО. Масло нагревают до температуры 110°С. Опускают в масло трубку для послойной подачи газообразного азота и пропускают азот со скоростью 20 мл/мин. При перемешивании со скоростью 200 об/мин в разогретое масло равномерно вливают в один прием полученную олигомерную массу. Полученную эмульсию выдерживают при нагреве, подаче азота и перемешивании до полного высыхания полученных гранул.

Стадия 3. Отмывка и перевод сорбента в рабочую форму:

Полученные гранулы отделяют от масла на вакуумной воронке и отмывают бензолом в аппарате Сокслета. Продукт выгружают и сушат от бензола. После сушки из продукта вымывают карбонат кальция при его перемешивании в 1 л 5%-ного раствора хлористоводородной кислоты. Далее осуществляют промывку вначале дистиллированной водой, затем раствором 5%-ного гидроксида натрия и затем раствором 5%-ной хлористоводородной кислоты.

Исследование свойств полученного сорбента и его характеристики представлены ниже.

А. Определение коэффициента распределения 137Cs.

Испытания сорбента из примера 1 проводили в статических условиях при сорбции цезия - 137 из модельного раствора, имитирующего кубовый остаток АЭС с реактором типа РБМК. Состав модельного раствора, г/дм3 (моль/дм3): NaNO3 - 300 (3,5); KNO 3 - 42 (0,4); NaOH - 4,0 (0,1).

Испытания проводили по следующей методике. Навеску воздушно-сухого сорбента массой 0,05 г непрерывно перемешивали с 20 см3 раствора 1 в течение 48 часов. Гранулы сорбента отделяли на бумажном фильтре и определяли в фильтрате удельную активность радионуклида 137Cs с использованием гамма-анализатора марки NRG-603. Удельная активность 137Cs в исходном растворе - около 100 Бк/см3.

По результатам анализов рассчитывали значения коэффициента распределения (Kd ) 137Cs по формуле:

способ получения сорбента для селективного извлечения цезия, патент № 2521379

где A0, Ap - соответственно исходная и равновесная удельная активность

137Cs в растворе, Бк/см3;

V p - объем жидкой фазы, см3;

m c - масса сорбента, г.

По результатам испытаний Kd137Cs для сорбента из примера 1 составил 1200 см3/г, что в 1,56 раза больше коэффициента распределения Kd137Cs для сорбента по прототипу (773 см3/г).

Б. Определение осмотической стабильности сорбента проведено по ГОСТ 17338-88.

Испытания показали, что осмотическая стабильность сорбента, полученного по примеру 1, составила 100%, что более чем в 2 раза лучше, чем для сорбента по прототипу (45%).

Таким образом, проведенные нами исследования показали, что сорбент, полученный в соответствии с заявленным способом, обеспечивает повышенную селективность при извлечении цезия из растворов, имеет высокую осмотическую стабильность, обладает развитой пористой структурой. Способ характеризуется технологичностью и обеспечивает получение сорбента в виде механически прочных гранул.

Класс B01J20/30 способы получения, регенерации или реактивации

способ получения углеродминерального сорбента -  патент 2529535 (27.09.2014)
способ получения сорбентов на основе zn(oh)2 и zns на носителе из целлюлозных волокон -  патент 2528696 (20.09.2014)
гуминово-глинистый стабилизатор эмульсии нефти в воде -  патент 2528651 (20.09.2014)
способ получения полимер-неорганических композитных сорбентов -  патент 2527217 (27.08.2014)
способ получения плавающего углеродного сорбента для очистки гидросферы от нефтепродуктов -  патент 2527095 (27.08.2014)
адсорбент для очистки газов от хлора и хлористого водорода и способ его приготовления -  патент 2527091 (27.08.2014)
способ получения сорбента для извлечения соединений ртути из водных растворов -  патент 2525416 (10.08.2014)
способ получения фильтрующей гранулированной загрузки производственно-технологических фильтров для очистки воды открытых источников водоснабжения -  патент 2524953 (10.08.2014)
способ получения адсорбирующего элемента -  патент 2524608 (27.07.2014)
способ получения регенерируемого поглотителя диоксида углерода -  патент 2524607 (27.07.2014)

Класс B01J20/26 синтетические высокомолекулярные соединения

биоразлагаемый композиционный сорбент нефти и нефтепродуктов -  патент 2528863 (20.09.2014)
способ получения полимер-неорганических композитных сорбентов -  патент 2527217 (27.08.2014)
сорбент для очистки водных сред от мышьяка и способ его получения -  патент 2520473 (27.06.2014)
способ удаления полициклических ароматических углеводородов -  патент 2516556 (20.05.2014)
способ получения адаптивно-селективного к редкоземельным металлам ионообменного материала -  патент 2515455 (10.05.2014)
способ получения модифицированного сорбента платиновых металлов -  патент 2491990 (10.09.2013)
новый гибридный органическо-неорганический материал im-19 и способ его получения -  патент 2490059 (20.08.2013)
способ получения сорбента для сбора нефти и нефтепродуктов с водных и твердых поверхностей -  патент 2487751 (20.07.2013)
способ изготовления химического адсорбента диоксида углерода -  патент 2484891 (20.06.2013)
способ получения сорбента на основе неорганических пористых гранул и полигидроксифуллерена для удаления атерогенных липопротеинов из плазмы крови -  патент 2484812 (20.06.2013)

Класс B01J45/00 Ионный обмен с образованием комплекса или хелатного соединения; использование материала в качестве комплексообразующих или хелатообразующих ионообменников; обработка материала для улучшения комплексообразующих или хелатообразующих ионообменных свойств

способ получения адаптивно-селективного к редкоземельным металлам ионообменного материала -  патент 2515455 (10.05.2014)
способ получения раствора ферроцианида лития -  патент 2512310 (10.04.2014)
катализатор тримеризации этилена в 1-гексен, лиганд для получения катализатора, способ получения катализатора и способ получения лиганда -  патент 2470707 (27.12.2012)
способ ионообменного разделения ионов меди (ii) и никеля (ii) -  патент 2466101 (10.11.2012)
способ ионообменного выделения радионуклидов иттрия, редкоземельных и трансплутониевых элементов из растворов альфа-гидроксиизомасляной кислоты и ее солей -  патент 2404922 (27.11.2010)
сорбент для удаления иммуноглобулинов -  патент 2389022 (10.05.2010)
способ удаления каталитических металлов и промоторных металлов из потоков процесса карбонилирования -  патент 2378247 (10.01.2010)
способ получения селективных сорбционных и ионообменных материалов -  патент 2325230 (27.05.2008)
комплексообразующая структура, способ очистки жидких отходов и устройство для его осуществления -  патент 2274487 (20.04.2006)
способ и устройство для непрерывного удаления катионов металлов из жидкости с помощью смол, содержащих полиазациклоалканы, привитые на носителе -  патент 2255806 (10.07.2005)
Наверх