способ тепловой обработки бетонных и железобетонных изделий

Классы МПК:C04B40/02 выбор условий для твердения
Патентообладатель(и):Смирнова Ольга Михайловна (RU)
Приоритеты:
подача заявки:
2012-05-11
публикация патента:

Изобретение относится к области строительства, а именно к способам тепловой обработки бетона и может найти применение в строительстве при изготовлении сборных бетонных или железобетонных изделий и конструкций. Изобретение позволит повысить скорость набора прочности бетона. Способ тепловой обработки бетонных и железобетонных изделий включает циклический прогрев путем подачи насыщенного пара, отключение подачи пара, выдерживание изделий, повторную подачу насыщенного пара, отключение подачи пара, выдержку изделий до их охлаждения. В первом цикле подачу насыщенного пара производят до достижения температуры среды, равной 30°С, в течение 0,5 часа, изотермическую выдержку изделий производят при температуре 30°С в течение 2,5 часов, во втором цикле подачу насыщенного пара производят до достижения температуры среды, равной 40°С, в течение 0,5 часа и осуществляют изотермическую выдержку изделия при температуре 40°С в течение 5,5 часов. 1 табл.

Формула изобретения

Способ тепловой обработки бетонных и железобетонных изделий, включающий циклический прогрев путем подачи насыщенного пара, отключение подачи пара, выдерживание изделий, повторную подачу насыщенного пара, отключение подачи пара, выдержку изделий до их охлаждения, отличающийся тем, что в первом цикле подачу насыщенного пара производят до достижения температуры среды, равной 30°С, в течение 0,5 часа, изотермическую выдержку изделий производят при температуре 30°С в течение 2,5 часов, во втором цикле подачу насыщенного пара производят до достижения температуры среды, равной 40°С, в течение 0,5 часа и осуществляют изотермическую выдержку изделия при температуре 40°С в течение 5,5 часов.

Описание изобретения к патенту

Изобретение относится к способам тепловой обработки бетона при атмосферном давлении в среде насыщенного пара и может найти применение в строительстве при изготовлении сборных бетонных или железобетонных изделий и конструкций.

Известен способ тепловлажностной обработки бетонных изделий при атмосферном давлении в среде насыщенного пара, включающий подъем температуры до 80-100°С в течение 1-2 ч, снижение температуры в течение 1-2 ч до 70-50°С, изотермическую выдержку при данных температурах 2-6 ч, подъем температуры до 100°С в течение 1-2 ч и охлаждение изделий (SU № 290020, С04В 40/02, 1970).

Недостатком такого способа тепловлажностной обработки является недостаточная скорость набора прочности бетона, в том числе, содержащего пластифицирующую добавку на основе эфиров поликарбоксилатов. Это связано с высокой скоростью подъема температуры, что способствует возникновению чрезмерных внутренних напряжений, приводящих к нарушению сплошности бетона и снижению его прочности после тепловлажностной обработки и в возрасте 28 суток.

Наиболее близким аналогом для заявленного способа тепловой обработки бетонных и железобетонных изделий является способ тепловой обработки с ограниченным тепловым воздействием в пропарочной камере при атмосферном давлении, включающий циклический прогрев путем подачи насыщенного пара до достижения температуры среды 80-100°С отключение подачи пара, выдерживание изделий, повторную подачу пара до достижения температуры 80-100°С, отключение подачи пара и выдерживание изделий до их охлаждения, выдерживание изделий в первом цикле тепловой обработки проводят сначала до достижения бетоном максимальной скорости роста прочности, а затем выдерживание в течение 0,5-1,5 ч, а во втором цикле подъем температуры осуществляют с максимально возможной скоростью и выдерживание изделий в течение 0,5-2 ч. (RU № 2052431, С04В 40/02 опуб. 20.01.1996).

Недостатком такого способа тепловлажностной обработки является недостаточная прочность бетона после тепловлажностной обработки и в возрасте 28 суток, в том числе бетона содержащего пластифицирующую добавку на основе эфиров поликарбоксилатов.

Задачей настоящего изобретения является повышение прочности бетона после тепловлажностной обработки и в возрасте 28 суток.

Технический результат достигается в способе тепловой обработки бетонных и железобетонных изделий, включающем циклический прогрев путем подачи насыщенного пара, отключение подачи пара, выдерживание изделий, повторную подачу насыщенного пара, отключение подачи пара, выдержку изделий до их охлаждения, в первом цикле подачу насыщенного пара производят до достижения температуры среды равной 30°С в течение 0,5 часа, изотермическую выдержку изделий производят при температуре 30°С в течение 2,5 часов, во втором цикле подачу насыщенного пара производят до достижения температуры среды равной 40°С в течение 0,5 часа и осуществляют изотермическую выдержку изделия при температуре 40°С в течение 5,5 часа.

Новым в данном техническом решении является новое сочетание известных приемов, используемых при тепловлажностной обработке сборных бетонных или железобетонных изделий и конструкций, при новых температурных режимах, что позволяет получить указанный выше технический результат.

По мнению заявителя, данный способ тепловлажностной обработки бетонных и железобетонных изделий не известен, и можно сделать вывод о соответствии изобретения условию патентоспособности способ тепловой обработки бетонных и железобетонных изделий, патент № 2519080 новизнаспособ тепловой обработки бетонных и железобетонных изделий, патент № 2519080 .

Так как заявленная совокупность существенных признаков проявляет новое свойство, позволяющее получить изменение количественной меры результата, а именно: повышение прочности бетона после тепловлажностной обработки, а также повышение прочности бетона в возрасте 28 суток, то можно сделать вывод о соответствии изобретения условию патентоспособности способ тепловой обработки бетонных и железобетонных изделий, патент № 2519080 изобретательский уровеньспособ тепловой обработки бетонных и железобетонных изделий, патент № 2519080 .

Заявляемое изобретение применимо и может быть использовано в промышленном, гражданском и транспортном строительстве. Основное потребление энергоресурсов при производстве сборных железобетонных изделий и конструкций связано с необходимостью их тепловлажностной обработки, поэтому разработка энергосберегающих режимов, обеспечивающих требуемую прочность бетона, в том числе бетона с пластифицирующими добавками, после тепловлажностной обработки, является актуальной задачей.

Для исследования свойств бетона после тепловой обработки, по заявляемому способу, были приготовлены бетонные смеси с осадкой конуса 2 см; в качестве заполнителей использован щебень фракции 5-20 и песок речной с модулем крупности 2,02; в качестве добавки на основе эфиров поликарбоксилатов - Sika Viscocrete 20 Gold. Для приготовления составов использовали портландцемент марки ПЦ-500Д0-Н. Осадку конуса определяли по ГОСТ 10181-2000 «Смеси бетонные. Методы испытаний». Определение прочности образцов - кубов с ребром 10 см - в соответствии с ГОСТ 10180-90 «Бетоны. Методы определения прочности по контрольным образцам» на серии образцов, изготовленных из бетонной смеси рабочего состава, хранившихся в условиях, установленных ГОСТ 18105. Пересчет значений прочности к кубам с ребром 15 см производился умножением на коэффициент, равный 0,95. Были также проведены испытания бетона без добавки и с добавкой, подвергнутого тепловой обработке по способу в соответствии с прототипом. Результаты проведенных испытаний представлены в таблице.

Анализ данных, представленных в таблице, показывает, что прочность бетона без добавки, подвергнутого тепловой обработке по способу согласно данному изобретению, выше на 8,6% по сравнению с прототипом после тепловлажностной обработки, и выше на 6,9% в возрасте 28 суток. Прочность бетона с добавкой, подвергнутого тепловой обработке по способу согласно данному изобретению, выше на 24,4% по сравнению с прототипом после тепловлажностной обработки, и выше на 14,5% в возрасте 28 суток.

Таким образом, наибольший прирост прочности бетона при использовании предложенного способа тепловой обработки, можно получить у образцов, содержащих добавку на основе эфиров поликарбоксилатов, по сравнению с образцами бетона без добавки.

Известно, что на прочность бетона после тепловлажностной обработки кроме характеристик цемента и водоцементного отношения значительное влияние оказывают параметры паропрогрева, такие как продолжительность предварительной выдержки, скорость подъема температуры, максимальная температура изотермической выдержки и скорость охлаждения. Наиболее рациональными режимами тепловлажностной обработки являются режимы, учитывающие процессы структурообразования бетона.

Для ограниченных по продолжительности режимов тепловлажностной обработки большое значение имеют не только сроки схватывания цемента, но и влияние добавок, которое они оказывают на сроки схватывания цементного теста. С увеличением расхода пластифицирующих добавок на основе эфиров поликарбоксилатов происходит удлинение сроков начала и конца схватывания цементного теста, несмотря на снижение содержания воды в изопластичных пастах, что необходимо учитывать при назначении режимов тепловлажностной обработки. Движение в бетоне газообразной фазы под действием нагрева осуществляется в основном вверх, в сторону открытой поверхности изделия, что приводит к деформированию и расслоению верхних слоев. Этот процесс наблюдался при тепловлажностной обработке свежеотформованных изделий с короткой предварительной выдержкой и быстрым подъемом температуры.

Повышение температуры предварительной выдержки бетона до 30°С ускоряет процессы гидратации цемента и способствует ускоренному структурообразованию бетона, что в дальнейшем позволяет снова повысить температуру прогрева бетона. Применение режимов со ступенчатым подъемом температуры дает улучшение прочностных показателей бетона. Выдерживание бетона в пропарочной камере при температуре изотермической выдержки 40°С способствует повышению прочности бетона после тепловой обработки в отличие от выдерживания бетона в камере твердения с обеспечением его саморазогрева и достижением температуры на его поверхности 15-40°С при условии одинаковой продолжительности выдерживания.

ТАБЛИЦА
Условия твердения В/Ц Расход на 1 куб.м, кгСостав бетонаДобавка, % Прочность в возрасте, МПа
Ц ПЩ После тепловлажностной обработки28 сут.
1 прототип Время предварительного выдерживания изделий 2 ч. Подъем температуры до 80°С 3 ч. 1-й цикл выдерживание изделий в камере без подачи тепла 3 ч. Вновь подъем температуры до 80°С 1 ч. 2-й цикл выдерживание изделий в отключаемой камере 1 ч. Продолжительность тепловой обработки 10 ч.0,33 5006921148 1:1,38:2,30- 36,164,1
2Подача пара до температуры среды 30°С в течение 0,5 часа и изотермическая выдержка при этой температуре в течение 2,5 часов; затем подача пара до температуры среды 40°С в течение 0,5 часа и изотермическая выдержка при этой температуре в течение 5,5 часов; охлаждение 1 час. Продолжительность тепловой обработки 10 ч.0,33 5006921148 1:1,38:2,30- 39,268,5
3 прототипВремя предварительного выдерживания изделий 2 ч. Подъем температуры до 80°С 3 ч. 1-й цикл выдерживание изделий в камере без подачи тепла 3 ч. Вновь подъем температуры до 80°С 1 ч. 2-й цикл выдерживание изделий в отключаемой камере 1 ч. Продолжительность тепловой обработки 10 ч. 0,31480686 11851:1,43:2,47 Sika Viscocrete 20 Gold 0,3% 37,361,3
4Подача пара до температуры среды 30°С в течение 0,5 часа и изотермическая выдержка при этой температуре в течение 2,5 часов; затем подача пара до температуры среды 40°С в течение 0,5 часа и изотермическая выдержка при этой температуре в течение 5,5 часов; охлаждение 1 час. Продолжительность тепловой обработки 10 ч.0,31 4806861185 1:1,43:2,47Sika Viscocrete 20 Gold 0,3%46,7 70,2

Класс C04B40/02 выбор условий для твердения

способ приготовления керамзитобетона -  патент 2528794 (20.09.2014)
камера для ускоренного твердения бетонных изделий с использованием энергии электромагнитных волн в видимой части спектра искусственного и естественного происхождения -  патент 2499665 (27.11.2013)
изготовление изделия, связанного преимущественно карбонатом, путем карбонизации щелочных материалов -  патент 2495004 (10.10.2013)
способ электромагнитной обработки бетонной смеси и устройство для его осуществления -  патент 2470775 (27.12.2012)
способ получения ячеистого строительного материала -  патент 2464251 (20.10.2012)
способ изготовления жаростойкой бетонной смеси на шлакощелочном вяжущем и способ изготовления изделий из жаростойкой бетонной смеси -  патент 2437854 (27.12.2011)
способ изготовления изделий в форме плит или блоков при использовании акрилового связующего -  патент 2421422 (20.06.2011)
способ возведения монолитных бетонных и железобетонных конструкций -  патент 2412138 (20.02.2011)
способ возведения монолитных бетонных и железобетонных конструкций -  патент 2400455 (27.09.2010)
плитка безыскровая двухслойная и способ ее изготовления -  патент 2371415 (27.10.2009)
Наверх