способ получения наноструктурного фталоцианинового катализатора демеркаптанизации нефти и газоконденсата

Классы МПК:B01J37/02 пропитывание, покрытие или осаждение
B01J37/04 смешивание
B01J23/75 кобальт
B82B3/00 Изготовление или обработка наноструктур
C10G27/10 в присутствии металлсодержащих органических комплексных соединений, например хелатов или катионообменных смол
Автор(ы):, , , , , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Москаз-Ойл" (RU)
Приоритеты:
подача заявки:
2013-01-09
публикация патента:

Изобретение относится к области катализа. Описан способ получения наноструктурного катализатора демеркаптанизации нефти и газоконденсата на основе производных фталоцианина кобальта и его хлорзамещенных продуктов, в котором полученные путем размола исходных фталоцианинов в шаровой мельнице при 100-120°C в присутствии спиртов общей формулы R-(OCH2- CH 2)n-OH, где при n=1 R=С6H5 , C4H9; при n=2 R=Н, C2H 5,наночастицы фталоцианина кобальта и его хлорзамещенных производных обрабатывают концентрированными водными растворами алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных с последующей стабилизацией катализатора линейными полиэфирами (полиэтиленгликолями). Технический результат - увеличение активности катализатора. 1 з.п. ф-лы, 5 пр.

Изобретение относится к способу получения наноструктурного фталоцианинового катализатора, сущность которого заключается в функционализации поверхности наночастиц фталоцианина кобальта и его хлорзамещенных производных алканоламмониевыми солями дисульфокислот фталоцианина кобальта и его хлорзамещенных производных.

Реализация данного способа позволяет упростить технологический процесс применения катализатора по сравнению с известными катализаторами, повысить его стабильность и агрегативную устойчивость.

Изобретение относится к химической промышленности, в частности к производству катализаторов на основе производных фталоцианина кобальта, применяемых в процессах жидкофазной окислительной демеркаптанизации нефти и газоконденсата.

Так, известен процесс демеркаптанизации нефти, в котором используют катализаторный комплекс, приготовленный растворением дихлордиоксидисульфофталоцианина кобальта в 1%-ном растворе щелочи с последующим доведением концентрации раствора щелочи до 20 мас.% (Пат. RU № 2087521, МПК6 C10G 27/10, опубл. 20.08.1997 г.). К недостаткам этого процесса следует отнести относительно низкую активность катализаторного комплекса, а также необходимость создания специальной схемы приготовления катализаторного комплекса на нефтеперерабатывающем предприятии.

Наиболее близким по технической сущности и получаемому эффекту является катализатор, представляющий собой надмолекулярный ионный ассоциат на основе производных фталоцианина кобальта, имеющих разнозарядные заместители во фталоцианиновом ядре (Пат. RU № 2381067, МПК С09В 47/00, C10G 27/10, опубл. 21.10.2008 г.). Основными недостатками предложенного катализатора являются сложность химического строения и необходимость проведения многостадийных процессов химического синтеза для их получения. Кроме того, катализатор представляет собой порошковые формы компонентов, что также требует создания специальной схемы приготовления катализаторного комплекса на нефтеперерабатывющем предприятии.

Целью данного изобретения явилась разработка способа получения катализатора демеркаптанизации нефти и газоконденсата в стабильной жидкой форме, с высокой каталитической активностью, исключающей необходимость ее приготовления у потребителя, улучшающей условия труда у производителя и у потребителя продукции.

Поставленная цель достигается путем обработки наноразмерных частиц фталоцианина кобальта или его хлорзамещенных производных концентрированными водными растворами алканоламмониевых солей дисульфокислот фталоцианина кобальта или его хлорзамещенных производных. При этом происходит модифицирование поверхности наночастиц молекулами алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных с образованием эффективных нанострутурных катализаторов. Наноструктура получаемого данным способом катализатора установлена с использованием растровой электронной микроскопии. Получение фталоцианина кобальта и его хлорзамещенных производных в виде агломератов с размером первичных частиц 5-10 нм осуществляется путем размола исходных фталоцианинов в шаровой мельнице при 100-120°C в присутствии спиртов общей формулы

R-(OCH2-CH2) n-ОН,

где при n=1 R=C6H5 , C4H9,

при n=2 R=H, C 2H5.

Для получения алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных используют алканоламины общей формулы

(CH3-)mN(-CH2-CH2 -ОН)3-m, где m=0-2.

Стабилизация реологических характеристик и устойчивости к седиментации наноструктурного катализатора осуществляется введением на заключительной стадии линейных полиэфиров (полиэтиленгликолей).

Положительный эффект от применения данного изобретения выражается в следующем:

- каталитическая композиция представляет собой однородную по составу текучую жидкость, не изменяющую вязкость во времени, и, следовательно, может дозироваться обычными объемными приборами;

- исключается технологическая схема приготовления растворов катализатора необходимой концентрации у потребителей;

- улучшаются условия труда за счет исключения запыленности помещений у производителя и у потребителя;

- существенно снижается энергоемкость производства.

Все образцы полученного предлагаемым способом наноструктурного катализатора были испытаны с положительным результатом по стандартной утвержденной методике: «Методика выполнения измерений константы скорости реакции окисления меркаптида натрия в присутствии катализатора Ивказ», аттестованной ФГУП ВНИИ Расходометрии (Свидетельство № 97106-02 от 05.12.2002 г.).

Способ получения наноструктурного катализатора демеркаптанизации нефти и газоконденсата иллюстрируется следующими примерами.

Пример 1. В лабораторную шаровую мельницу загружают 20 г фталоцианина кобальта и 2 г феноксиэтанола. Смесь размалывают со стальными шарами при 120°C в течение 24 часов, выгружают и используют на стадии приготовления катализатора. По данным растровой электронной микроскопии (РЭМ) размер первичных частиц составляет 5-10 нм. В лабораторный смеситель с Z-образными лопастями загружают 308 г (100 г в пересчете на 100%-ный) водной пасты дисульфокислоты фталоцианина кобальта и при перемешивании медленно прибавляют 60 г триэтаноламина. После пластичного размола в течение 20 мин замеряют рН среды, который должен быть в пределах 8,0-9,5. Затем к массе добавляют размолотую смесь с предыдущей стадии, 10,0 г полиэтиленгликоля ПЭГ-13 (м.м. 600) до получения 25%-ного содержания дисульфокислоты фталоцианина кобальта, размешивают в течение 1 часа, анализируют и сливают продукт в тару. Анализ дисперсности методом РЭМ показывает, что размер первичных частиц катализатора составляет 20-50 нм. Выход готового продукта составляет 99%.

Пример 2. В лабораторную шаровую мельницу загружают 20 г монохлорфталоцианина кобальта и 2 г бутилцеллозольва. Смесь размалывают со стальными шарами при 100°C в течение 24 часов, выгружают и используют на стадии приготовления катализатора (дисперсность 5-10 нм). В лабораторный смеситель с Z-образными лопастями загружают 328 г (100 г в пересчете на 100%-ный) водной пасты дисульфокислоты монохлорфталоцианина кобальта и при перемешивании медленно прибавляют 45 г триэтаноламина. После пластичного размола в течение 20 мин замеряют pH среды, который должен быть в пределах 8,0-9,5. Затем к массе добавляют размолотую смесь с предыдущей стадии, 5 г полиэтиленгликоля ПЭГ-35 (м.м. 1500) до получения 25%-ного содержания дисульфокислоты монохлорфталоцианина кобальта, размешивают в течение 1 часа (дисперсность 20-50 нм) и сливают продукт в тару. Выход готового продукта составляет 99,5%.

Пример 3. В лабораторную шаровую мельницу загружают 20 г дихлорфталоцианина кобальта и 1 г этилкарбитола. Смесь размалывают со стальными шарами при 100°C в течение 24 часов, выгружают и используют на стадии приготовления катализатора (дисперсность 5-10 нм). В лабораторный смеситель с Z-образными лопастями загружают 340 г (100 г в пересчете на 100%-ный) водной пасты дисульфокислоты дихлорфталоцианина кобальта и при перемешивании медленно прибавляют 39 г метилдиэтаноламина. После пластичного размола в течение 20 мин замеряют рН среды, который должен быть в пределах 8,0-9,5. Затем к массе добавляют размолотую смесь с предыдущей стадии, 10,0 г полиэтиленгликоля ПЭГ-13 (м.м. 600) и 257 г воды до получения 15%-ного содержания дисульфокислоты дихлорфталоцианина кобальта, размешивают в течение 1 часа (дисперсность 20-50 нм) и сливают продукт в тару. Выход готового продукта составляет 99,5%.

Пример 4. В лабораторную шаровую мельницу загружают 20 г дихлорфталоцианина кобальта и 2 г диэтиленгликоля. Смесь размалывают со стальными шарами при 105°C в течение 24 часов, выгружают и используют на стадии приготовления катализатора (дисперсность 5-10 нм). В лабораторный смеситель с Z-образными лопастями загружают 340 г (100 г в пересчете на 100%-ный) водной пасты дисульфокислоты дихлорфталоцианина кобальта и при перемешивании медленно прибавляют 37 г диметилэтаноламина. После пластичного размола в течение 20 мин замеряют рН среды, который должен быть в пределах 8,0-9,5. Затем к массе добавляют размолотую смесь с предыдущей стадии, 10,0 г полиэтиленгликоля ПЭГ-9 (м.м. 400) и 258 г воды до получения 15%-ного содержания дисульфокислоты дихлорфталоцианина кобальта, размешивают в течение 1 часа (дисперсность 20-50 нм) и сливают продукт в тару. Выход готового продукта составляет 99,5%.

Пример 5. В лабораторную шаровую мельницу загружают 20 г фталоцианина кобальта и 2 г феноксиэтанола. Смесь размалывают со стальными шарами при 115°C в течение 22 часов, выгружают и используют на стадии приготовления катализатора (дисперсность 5-10 нм). В лабораторный смеситель с Z-образными лопастями загружают 340 г (100 г в пересчете на 100%-ный) водной пасты дисульфокислоты дихлорфталоцианина кобальта и при перемешивании медленно прибавляют 55 г триэтаноламина. После пластичного размола в течение 20 мин замеряют pH среды, который должен быть в пределах 8,0-9,5. Затем к массе добавляют размолотую смесь с предыдущей стадии, 10,0 г полиэтиленгликоля ПЭГ-9 (м.м. 400) и 240 г воды до получения 15%-ного содержания дисульфокислоты дихлорфталоцианина кобальта, размешивают в течение 1 часа (дисперсность 20-50 нм) и сливают продукт в тару. Выход готового продукта составляет 99,5%.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ получения наноструктурного катализатора демеркаптанизации нефти и газоконденсата на основе производных фталоцианина кобальта и его хлорзамещенных продуктов, отличающийся тем, что полученные путем размола исходных фталоцианинов в шаровой мельнице при 100-120°C в присутствии спиртов общей формулы R-(OCH2-CH 2)n-OH, где при n=1 R=С6H5 , C4H9; при n=2 R=Н, C2H 5, наночастицы фталоцианина кобальта и его хлорзамещенных производных обрабатывают концентрированными водными растворами алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных с последующей стабилизацией катализатора линейными полиэфирами (полиэтиленгликолями).

2. Способ по п.1, отличающийся тем, что для получения алканоламмониевых солей дисульфокислот фталоцианина кобальта и его хлорзамещенных производных используют алканоламины общей формулы

(CH 3-)mN(-CH2-CH2-ОН) 3-m, где m=0-2.


Скачать патент РФ Официальная публикация
патента РФ № 2517188

patent-2517188.pdf
Патентный поиск по классам МПК-8:

Класс B01J37/02 пропитывание, покрытие или осаждение

Патенты РФ в классе B01J37/02:
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения -  патент 2528389 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления -  патент 2523015 (20.07.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)

Класс B01J37/04 смешивание

Патенты РФ в классе B01J37/04:
способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
катализатор на основе меди, нанесенный на мезопористый уголь, способ его получения и применения -  патент 2517108 (27.05.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
способ приготовления катализатора для получения ароматических углеводородов, катализатор, приготовленный по этому способу, и способ получения ароматических углеводородов с использованием полученного катализатора -  патент 2515511 (10.05.2014)
способ приготовления катализатора для окислительной конденсации метана, катализатор, приготовленный по этому способу, и способ окислительной конденсации метана с использованием полученного катализатора -  патент 2515497 (10.05.2014)
способ переработки биомассы в целлюлозу и раствор низкомолекулярных продуктов окисления (варианты) -  патент 2515319 (10.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)
окислительный катализатор -  патент 2505355 (27.01.2014)

Класс B01J23/75 кобальт

Патенты РФ в классе B01J23/75:
катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ оптимизации функционирования установки для синтеза углеводородов из синтез-газа путем контроля парциального давления со -  патент 2525291 (10.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды -  патент 2522324 (10.07.2014)
способы гидрокрекинга с получением гидроизомеризованного продукта для базовых смазочных масел -  патент 2519547 (10.06.2014)
катализаторы -  патент 2517700 (27.05.2014)

Класс B82B3/00 Изготовление или обработка наноструктур

Патенты РФ в классе B82B3/00:
способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)

Класс C10G27/10 в присутствии металлсодержащих органических комплексных соединений, например хелатов или катионообменных смол

Патенты РФ в классе C10G27/10:
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
катализаторы сульфоокисления и способы и системы их применения -  патент 2472841 (20.01.2013)
каталитическая композиция для демеркаптанизации нефти и нефтепродуктов -  патент 2458968 (20.08.2012)
способ очистки нефти и газоконденсата от сероводорода и меркаптанов -  патент 2418035 (10.05.2011)
способ очистки углеводородных композиций от меркаптанов -  патент 2404225 (20.11.2010)
установка очистки нефти (варианты) -  патент 2387695 (27.04.2010)
катализатор и способ гомогенной окислительной демеркаптанизации нефти и нефтепродуктов -  патент 2381067 (10.02.2010)
катализатор и способ окисления сульфида натрия -  патент 2381066 (10.02.2010)
катализатор и способ окислительной демеркаптанизации нефти и нефтепродуктов -  патент 2381065 (10.02.2010)


Наверх