способ испытания на сульфидную коррозию жаропрочных порошковых никелевых сплавов

Классы МПК:C22C1/04 порошковой металлургией
Автор(ы):,
Патентообладатель(и):Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU)
Приоритеты:
подача заявки:
2012-12-28
публикация патента:

Изобретение относится к области определения коррозионной стойкости металлов и может быть использовано для контроля подверженности к сульфидной коррозии деталей из порошковых никелевых сплавов газотурбинных двигателей. Способ включает нанесение агрессивного реагента на поверхность заготовки, нагревание и оценку степени коррозионного поражения с использованием агрессивного реагента, содержащего сульфат натрия и легкоплавкий сульфат аммония, при этом сначала проводят нагревание заготовки до 250° С, наносят первый слой агрессивного реагента, повторно нагревают заготовку до 250° С и наносят второй слой агрессивного реагента, затем проводят стабилизирующий нагрев при 600° С в течение 0,5-1,0 час и охлаждение на воздухе с последующим проведением оценки степени коррозионного поражения к сульфидной коррозии по снижению сопротивления материала заготовки малоцикловой усталости. Технический результат: возможность проведения оценки качества деталей при заводском контроле, повышение коррозионной стойкости и увеличение ресурса деталей в 1,25 - 1,5 раз. 1 табл.

Формула изобретения

Способ испытания заготовок элементов газотурбинного двигателя из никелевых порошковых сплавов на сульфидную коррозии, включающий нанесение агрессивного реагента на поверхность заготовки, нагревание и оценку степени коррозионного поражения, отличающийся тем, что используют агрессивный реагент, содержащий сульфат натрия и легкоплавкий сульфат аммония, при этом сначала проводят нагревание заготовки до 250 °С, наносят первый слой агрессивного реагента, повторно нагревают заготовку до 250°С и наносят второй слой агрессивного реагента, затем проводят стабилизирующий нагрев при 600 °С в течение 0,5-1,0 час и охлаждение на воздухе с последующим проведением оценки степени коррозионного поражения к сульфидной коррозии по снижению сопротивления материала заготовки малоцикловой усталости.

Описание изобретения к патенту

Предлагаемое изобретение относится к порошковой металлургии, в частности к порошковым никелевым сплавам, и может использоваться при изготовлении заготовок тяжелонагруженных деталей для газотурбинных двигателей, работающих при повышенных температурах.

Известен способ испытания элементов газотурбинного двигателя путем термоциклического воздействия на элемент газовым потоком, который заключается в том, что сначала проводят химическую обработку в электролите, затем электрохимическую анодную обработку, далее механическое нагружение, состоящее из нагружения на вибростенде и статистического нагружения, после чего термоциклическое воздействие в агрессивной атмосфере СО и SO2 и далее механическое нагружение, причем цикл производят многократно (Патент РФ 2270431, С1 2004 года).

Недостатком этого способа является то, что он требует большого расхода металла, сложен в процедуре проведения и не предусматривает оценочные характеристики, связанные с условиями эксплуатации изделий. Способ предусматривает только определение потери массы и глубины поражений после коррозионных испытаний. Эти параметры не отражают специфику работы деталей газотурбинных двигателей, поскольку они подвергаются в эксплуатации циклическим нагрузкам.

Наиболее близким способом по технической сущности к заявленному является способ испытания для лопаток газотурбинных двигателей.

В этом способе для составления агрессивной среды используются следующие компоненты, масс.%:

Сульфат натрия Na2SO4 66,2
Пятиокись ванадия V2O51,8
Окись железа Fe2O3 20,4
Окись никеля NiO8,3
Окись кальция CaO3,3

Эти компоненты смешиваются и на их основе готовится суспензия на этиловом спирте. Суспензия равномерно наносится на поверхность образцов в количестве ~ 120 г/м2. Покрытые образцы помещаются в алундовые тигли, которые в свою очередь располагаются в замкнутом контейнере. Через контейнер продувается воздух со скоростью 20 л в минуту. Испытания проводятся при постоянной температуре в интервале 700 - 900°С. Степень коррозионных повреждений определяется по потере массы (г/м2) и глубине коррозии (мкм) (Е.Б.Качанов, Ю.А.Тамарин Покрытия для защиты лопаток турбин от сульфидной коррозии./ Технология легких сплавов 2005, № 1-4, с.175 - прототип).

Недостатком этого способа является то, что он не предусматривает оценку влияния сульфидной среды на малоцикловую усталость - наиболее чувствительную характеристику коррозионного поражения металла.

Предлагаемый способ отличается от прототипа тем, что на поверхность образцов наносится слой из водного раствора сульфата натрия Na 2SO4 с добавкой более легкоплавкого сульфата аммония (NH4)2SO4 с последовательностью и параметрами по нанесению слоя: нагрев до 250°С, нанесение первого слоя, нагрев до 250°С, нанесение второго слоя, стабилизирующий нагрев при 600°С 0,5-1,0 часа - охлаждение на воздухе.

Состав агрессивного слоя и способ его нанесения на поверхность испытуемых образцов позволяет получить стойкое покрытие, допускающее проведение испытаний на малоцикловую усталость.

Испытания на общую коррозию и малоцикловую усталость проводятся при температурах в интервале 600-800°С.

Введение в агрессивную среду легкоплавкой добавки позволяет значительно сократить время испытаний - с 200 часов до 30-60 часов.

Технический результат - выявление влияния сульфидной коррозии не только по потере массы, но и по сопротивлению малоцикловой усталости.

Пример

Для опробования методом порошковой металлургии был изготовлен никелевый сплав ВВ750П по ГОСТ 52802-2007, содержащий: хром, кобальт, вольфрам, молибден, титан, алюминий, ниобий.

Результаты опробования определения сульфидной коррозии по предлагаемому способу и прототипу приведены в таблице 1.

Таблица 1
Результаты испытаний на сульфидную коррозию, при температуре 750°С
Способ По потере массы 1) По сопротивлению малоцикловой усталости 2)
Время испытаний, часСкорость коррозии, г/м2чСтойкость испытуемого сплаваСреднее число циклов до разрушенияКоэффициент влияния среды, nс/nв
БаллыСостояниеИспытания на воздухе, nвИспытания в агрессивной

среде, nс
способ испытания на сульфидную коррозию жаропрочных порошковых   никелевых сплавов, патент № 2516271
Заявленный 300,0354 Стойкое10035 3) 82700,824
Прототип2000,031 4Стойкое Не определяется из-за осыпания агрессивного слоя
Примечание: 1) По ГОСТ 13819-68 Коррозионная стойкость оценивается группой и баллом: совершенно стойкие - 1; весьма стойкие - 2,3; стойкие - 4,5; понижено стойкие - 6,7; мало стойкие - 8,9; не стойкие - 10.

2) Частота 1 Гц, напряжение 1060 МПа.

3) Время 2,8 ч.

Из таблицы 1 видно, что предлагаемый способ позволяет оценить влияние сульфидной коррозии по потере массы. При этом время проведения испытаний сокращается в 6,7 раза. Кроме того, степень коррозионного поражения при этом методе может быть достаточно надежно оценена по снижению сопротивления материала малоцикловой усталости (отношение числа циклов до разрушения в среде и на воздухе - nс/nв). Поэтому становится возможным проводить оценку качества при заводском контроле. Это позволит за счет повышения коррозионной стойкости увеличить ресурс изделий в 1,25-1,5 раз.

Скачать патент РФ Официальная публикация
патента РФ № 2516271

patent-2516271.pdf

Класс C22C1/04 порошковой металлургией

способ получения алюминиевого композиционного материала с ультрамелкозернистой структурой -  патент 2529609 (27.09.2014)
способ приготовления твердосплавной шихты с упрочняющими частицами наноразмера -  патент 2525192 (10.08.2014)
порошковый износо- корозионно-стойкий материал на основе железа -  патент 2523648 (20.07.2014)
способ получения многослойного композита на основе ниобия и алюминия с использованием комбинированной механической обработки -  патент 2521945 (10.07.2014)
жаропрочный порошковый сплав на основе никеля, стойкий к сульфидной коррозии и изделие, изготовленное из него -  патент 2516681 (20.05.2014)
способ получения изделий из сложнолегированных порошковых жаропрочных никелевых сплавов -  патент 2516267 (20.05.2014)
способ изготовления порошкового композита сu-cd/nb для электроконтактного применения -  патент 2516236 (20.05.2014)
способ получения порошков сплавов на основе титана, циркония и гафния, легированных элементами ni, cu, ta, w, re, os и ir -  патент 2507034 (20.02.2014)
способы производства нефтепромысловых разлагаемых сплавов и соответствующих продуктов -  патент 2501873 (20.12.2013)
способ получения композиционного материала из металлических порошков с заданным физико-механическим свойством -  патент 2499066 (20.11.2013)
Наверх