ПАТЕНТНЫЙ ПОИСК В РФ
НОВЫЕ ПАТЕНТЫ, ЗАЯВКИ НА ПАТЕНТ
БИБЛИОТЕКА ПАТЕНТОВ НА ИЗОБРЕТЕНИЯ

способ обогащения руд цветных металлов

Классы МПК:B03B7/00 Комбинированные способы (сочетание мокрых и прочих способов) и устройства для разделения материалов, например для обогащения руд или отходов
B03B1/00 Кондиционирование для облегчения разделения путем изменения физических свойств материалов, подлежащих обработке
Автор(ы):, , ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Сибирский федеральный университет" (RU)
Приоритеты:
подача заявки:
2012-10-25
публикация патента:

Изобретение относится к процессам обогащения руд полезных ископаемых и может быть использовано для увеличения полноты извлечения ценных продуктов, в частности цинка и свинца, методом флотации. Способ обогащения руд цветных металлов включает флотацию, предварительную обработку пульпосодержащего раствора импульсными разрядами и дальнейшее осаждение твердой фазы. Предварительную обработку пульпосодержащего раствора осуществляют импульсными высоковольтными разрядами с удельной энергией 8,6-11,2 кДж/дм 3, которые подают непосредственно в трубопровод, соединяющий флотационную машину с отстойником-сгустителем. Воздействие импульсными высоковольтными разрядами осуществляют при условии: R/Ro =10,4, где: R - радиус эффективного воздействия волн; R o - расстояние между электродами и R. Технический результат - повышение интенсивности и скорости осаждения дисперсных частиц из пены после флотационных машин и повышение качества очищенного раствора. 1 з.п. ф-лы, 3 ил., 1 табл.

Рисунки к патенту РФ 2514351

способ обогащения руд цветных металлов, патент № 2514351 способ обогащения руд цветных металлов, патент № 2514351 способ обогащения руд цветных металлов, патент № 2514351

Изобретение относится к процессам обогащения руд полезных ископаемых и может быть использовано для увеличения полноты извлечения ценных продуктов, в частности цинка и свинца, методом флотации.

Известен способ очистки и стерилизации жидких или газообразных сред путем обработки их импульсными высоковольтными разрядами, генерирующими УФ излучение (патент РФ № 2326820, C02F 1/467, 20.06.2008).

При возникновении на поверхности водяной струи скользящего высоковольтного разряда происходит дробление струи на мельчайшие капельки, при этом в каплях воды и в потоке очищаемой среды под действием жесткого УФ излучения образуются активные частицы. Очистка и стерилизация обрабатываемых сред осуществляется в результате комплексного воздействия на органические и биологические загрязнители УФ радиации и активных радикальных частиц. Прямой эффект УФ радиации приводит к быстрой гибели бактерий и вирусов и вызывает деструкцию молекул органических загрязнений.

Однако производительность при использовании данного метода будет невысокой, т.к. вода подается на очистку тонкой струей. Полая конфигурация электродов создает риск засорения трубки для формирования тонкой водяной струи, что делает применяемые электроды малопригодными. Кроме того, для проведения процесса необходимо дополнительное оборудование, что приводит к увеличению капитальных затрат.

Наиболее близким к заявляемому техническому решению по технической сущности и достигаемому техническому результату является способ обогащения сульфидных сидеритсодержащих руд (патент РФ № 2123885, В03В 7/00, 27.12.1998). Предварительную обработку сульфидных сидеритсодержащих руд проводят в пульпе электровзрывом при удельной энергии 50-150 кДж/дм3. Затем пульпу подвергают магнитной сепарации и флотации. При определенных режимах электровзрывной обработки за счет целого комплекса разрядных и послеразрядных явлений сидерит, содержащийся в исходной руде, полностью разлагается и переходит в сильномагнитную форму.

Описанный способ принят за прототип изобретения.

Недостатки прототипа:

- высокие затраты энергии по сравнению с предлагаемым способом (50-150 кДж/дм 3);

- необходимость дополнительного оборудования в виде контактного чана, в котором расположена электродная система и проводится электровзрывная обработка;

- необходимость дополнительных мер безопасности вследствие использования высоких энергетических воздействий.

Технической задачей настоящего изобретения является повышение интенсивности и скорости осаждения дисперсных частиц из пены после флотационных машин и повышение качества очищенного раствора.

Достигается это тем, что в предлагаемом способе обогащения руд цветных металлов, включающем флотацию, предварительную обработку пульпосодержащего раствора импульсными высоковольтными разрядами и дальнейшее осаждение твердой фазы, согласно изобретению предварительную обработку пульпосодержащего раствора осуществляют импульсными высоковольтными разрядами с удельной энергией 8,6-11,2 кДж/дм3, которые подают непосредственно в трубопровод, соединяющий флотационную машину с отстойником-сгустителем.

Воздействие импульсными высоковольтными разрядами осуществляют при условии

R/Ro=10,4,

где R - радиус эффективного воздействия волн;

Ro - расстояние между электродами и R.

При этом импульсный высоковольтный разряд происходит непосредственно в трубопроводе, соединяющем флотационную машину с отстойником-сгустителем, без использования каких-либо промежуточных дополнительных емкостей типа контактного чана.

Сущность заявляемого способа заключается в следующем. В результате флотации получают концентрированный продукт и пульпосодержащий раствор. Далее раствор через трубопровод поступает в отстойник-сгуститель. Обработка раствора импульсными высоковольтными разрядами происходит непосредственно в трубопроводе. Это позволяет проводить процесс в непрерывном гидродинамическом режиме в отличие от прототипа, где электровзрывная обработка осуществляется в стационарном режиме, в контактном чане с электродной системой.

Формируемый импульсными высоковольтными разрядами фронт волны приводит обрабатываемую среду в сложное напряженное состояние с активным участием как волн сжатия, зависящих от энергетических параметров импульса, так и волн растяжения, от которых зависят геометрические характеристики технологического узла - расстояние между электродами Ro и радиус эффективного воздействия волн R. Путем эксперимента было доказано, что радиусы связаны соотношением R/Ro=10,4. Как видно из графика, изображенного на рисунке 1, максимум давления на фронте прямой волны (Рм1) нелинейно возрастает с увеличением удельной энергии обработки, а величина максимума давления отраженной волны (Рм2) стабилизируется при энергиях 8,6-11,2 кДж/дм 3. Исследование влияния плотности среды на результирующее давление показало, что с увеличением плотности до способ обогащения руд цветных металлов, патент № 2514351 =1,26 г/см3, что соответствует плотности пульпы Т:Ж=1:3, наблюдается увеличение давления ударной волны, а при соотношении R/Ro>10,4 давление начинает падать, коагуляция дисперсных частиц ухудшается.

Следовательно, практическое использование ударных волн при импульсном высоковольтном разряде наиболее эффективно при R/Ro=10,4. Это позволяет определить оптимальное R.

Таким образом, в отличие от способа, принятого за прототип, можно определить оптимальный диаметр пульпопровода с учетом рассчитанного радиуса эффективного воздействия ударных волн, при котором электровзрывная обработка будет осуществляться наиболее эффективным образом.

При соотношении Т:Ж до 1:3 оптимальное расстояние R составляет 10-12,5 мм (рисунок 2). Следовательно, оптимальный диаметр пульпопровода - 25 мм.

Воздействие импульсных высоковольтных разрядов значительно снижает электрокинетический потенциал частиц. Это имеет определяющее значение с точки зрения коагуляции дисперсных частиц. Из диаграммы, изображенной на рисунке 3, видно, что потенциал достигает величины (7-9 мВ), значительно меньше предела порога коагуляции (30 мВ), что улучшает коагуляцию частиц и их последующее осаждение. Экспериментально установлено, что наиболее интенсивная коагуляция и осаждение частиц наблюдается в случае воздействия на раствор перед его осветлением импульсных высоковольтных разрядов с удельной энергией 8,6-11,2 кДж/дм3 (таблица).

Таким образом, в данных условиях электрокинетический потенциал частиц за счет обработки пульпосодержащего раствора импульсными высоковольтными разрядами при удельной энергии 8,6-11,2 кДж/дм3 достигает величины 7-9 мВ, что приводит к ускорению процесса осаждения дисперсных частиц.

При таких энергиях обработки полнота извлечения ценных компонентов максимальна, а потери продукта с осветленным раствором минимальны.

Пример реализации способа.

Исходная проба содержала, %: Pb - 4,07; Zn - 0,5; Cu - 0,17; Fe - 27,5; SiO2 - 33,32; Al2O3 - 2,96; CaO - 1,86; Mn - 1,66.

Требуемая тонкость помола - 75% класса 0,074 была достигнута измельчением в лабораторной стержневой мельнице при соотношении Т:Ж:С=1:0,8:4,8.

Масса навески - 250 г. Время измельчения - 40 мин. Время флотации - 10 мин.

Режим флотации: сода (900 г/т, t к=1 мин); сернистый натрий (30 г/т, tк=1 мин); бутиловый ксантогенат (90 г/т, tк=2 мин); сосновое масло (60 г/т, tк=1 мин).

Флотация проводилась во флотационной машине объемом 1 л при концентрации твердого 25%. Температура воды - 18°С.

Далее пульпосодержащий раствор подвергали обработке импульсными разрядами с энергией от 3,4 до 16,5 кДж/дм3. Расстояние между электродами составило 12,5 мм. При этом разряды подавали непосредственно в трубопровод, соединяющий флотационную машину с отстойником-сгустителем. Диаметр трубопровода - 25 мм. Затем раствор направлялся в отстойник-сгуститель, где производилось его разделение на твердую и жидкую фазы под действием сил тяжести, и определялась эффективность отстаивания. Результаты эксперимента приведены в таблице.

Таблица
Зависимость содержания твердого продукта в осветленном растворе от энергии импульса высоковольтного разряда
Удельная энергия разряда, кДж/дм3 03,46,0 8,69,211,2 13,416,5
Содержание твердого продукта в осветленном растворе, мг/дм335 850,9 14,610 15

Экспериментальные данные показывают, что увеличение энергии импульса более 8,6-11,2 кДж/дм 3 приводит к переизмельчению частиц, ухудшению их агрегации и последующему осаждению. Воздействие импульсом энергией, меньшей 8,6-11,2 кДж/дм3, не способно снизить электрокинетический потенциал частицы до величины ниже предела порога коагуляции. Как видно из таблицы, содержание твердого продукта в растворе уменьшается с 35 г/л до 0,9 г/л. Эффективность извлечения твердой фазы из пульпосодержащего раствора составляет при этом 97,4%.

Преимущества предлагаемого способа в сравнении с прототипом:

1) Раствор проходит обработку при значительно меньших удельных энергиях (8,6-11,2 кДж/дм3 ), что приводит к уменьшению энергетических затрат;

2) Уменьшение удельной энергии обработки позволяет снизить электрокинетический потенциал. Вследствие этого коагуляция дисперсных частиц улучшается. Содержание твердого в растворе уменьшается с 35 г/л до 0,9 г/л. Эффективность извлечения твердой фазы из пульпосодержащего раствора составляет 97,4%.

3) Обработка проводится в непрерывном гидродинамическом режиме в отличие от прототипа, где необходимо использование дополнительного оборудования;

4) Определено оптимальное соотношение расстояния между электродами Ro и радиусом эффективного воздействия волн R: R/R o=10,4, при котором использование ударных волн при импульсном электроразряде наиболее эффективно.

5) Возможность определения оптимального диаметра пульпопровода.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ обогащения руд цветных металлов, включающий флотацию, предварительную обработку пульпосодержащего раствора импульсными высоковольтными разрядами и его дальнейшее осаждение, отличающийся тем, что предварительную обработку пульпосодержащего раствора осуществляют импульсными высоковольтными разрядами с удельной энергией 8,6-11,2 кДж/дм3, которые подают непосредственно в трубопровод, соединяющий флотационную машину с отстойником-сгустителем.

2. Способ обогащения руд цветных металлов по п.1, отличающийся тем, что воздействие импульсными высоковольтными разрядами осуществляют при условии

R/Ro=10,4,

где R - радиус эффективного воздействия волн;

Ro - расстояние между электродами и R.


Скачать патент РФ Официальная публикация
патента РФ № 2514351

patent-2514351.pdf
Патентный поиск по классам МПК-8:

Класс B03B7/00 Комбинированные способы (сочетание мокрых и прочих способов) и устройства для разделения материалов, например для обогащения руд или отходов

Патенты РФ в классе B03B7/00:
способ определения золотоносности горных пород -  патент 2526959 (27.08.2014)
способ комплексной переработки мартит-гидрогематитовой руды -  патент 2521380 (27.06.2014)
способ обогащения эвдиалитовых руд -  патент 2515196 (10.05.2014)
способ подготовки к обогащению труднообогатимых углей -  патент 2514248 (27.04.2014)
машина для сухой оттирки -  патент 2514054 (27.04.2014)
способ переработки радиоэлектронного скрапа -  патент 2509606 (20.03.2014)
обогатительный модуль для комбинированной переработки многолетнемерзлых хвостов от обогащения вкрапленных медно-никелевых руд норильских месторождений -  патент 2504437 (20.01.2014)
установка для обогащения угольного шлама в спиральных сепараторах (варианты) -  патент 2498860 (20.11.2013)
способ переработки отходов калийного производства -  патент 2497961 (10.11.2013)
способ получения и использования продуктов скважинной гидродобычи и устройство для его осуществления -  патент 2496980 (27.10.2013)

Класс B03B1/00 Кондиционирование для облегчения разделения путем изменения физических свойств материалов, подлежащих обработке

Патенты РФ в классе B03B1/00:
способ выбора оптимальных параметров процесса измельчения руды -  патент 2446016 (27.03.2012)
способ флотационного обогащения руд, содержащих сульфидные минералы и золото -  патент 2443475 (27.02.2012)
способ извлечения плавучих форм золота из золотосодержащих минеральных продуктов -  патент 2440430 (20.01.2012)
способ флотации медно-цинково-пиритной руды (варианты) -  патент 2433866 (20.11.2011)
способ флотационного обогащения руд, содержащих сульфидные минералы и золото -  патент 2426598 (20.08.2011)
способ обогащения полиминеральных суспензий -  патент 2401163 (10.10.2010)
способ флотационного обогащения руд, содержащих сульфидные минералы и золото -  патент 2389557 (20.05.2010)
способ пульпоподготовки к флотации магнитной фракции из продуктов обогащения сульфидных медно-никелевых руд, содержащих ферромагнитные минералы железа и благородных металлов -  патент 2370316 (20.10.2009)
способ оттирки руд -  патент 2365417 (27.08.2009)
способ очистки минеральных зерен от флотационных реагентов и шламовых покрытий и устройство для его осуществления при обогащении руды -  патент 2351397 (10.04.2009)


Наверх