широкополосный каскодный усилитель

Классы МПК:H03F3/45 дифференциальные усилители
H03F3/00 Усилители, имеющие в качестве усилительных элементов только электронные или только полупроводниковые приборы
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный университет экономики и сервиса" (ФГБОУ ВПО "ЮРГУЭС") (RU)
Приоритеты:
подача заявки:
2012-09-24
публикация патента:

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов). Технический результат заключается в повышении верхней граничной частоты fгр коэффициента усиления по напряжению каскадного усилителя (КУ), расширении диапазона рабочих частот КУ, уменьшении общего энергопотребления. Широкополосный каскодный усилитель содержит входной транзистор (1), исток которого соединен с первой (2) шиной источника питания, затвор - с источником входного напряжения (3), а сток - с истоком первого (4) выходного транзистора и инвертирующим входом вспомогательного усилителя напряжения (5), выход которого подключен к затвору первого (4) выходного транзистора, а неинвертирующий вход связан с источником опорного напряжения (6), цепь нагрузки (7), включенную между выходом устройства (8) и второй (9) шиной источника питания. Сток первого (4) выходного транзистора соединен с истоком дополнительного транзистора (10), сток которого подключен к выходу устройства (8), а затвор связан со входом дополнительного неинвертирующего усилителя тока (11), выход которого соединен с истоком первого (4) выходного транзистора или истоком дополнительного транзистора (10), причем между второй (9) шиной источника питания и входом дополнительного неинвертирующего усилителя тока (11) включен дополнительный токостабилизирующий двухполюсник (12). 10 ил. широкополосный каскодный усилитель, патент № 2513486

широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486 широкополосный каскодный усилитель, патент № 2513486

Формула изобретения

Широкополосный каскодный усилитель, содержащий входной транзистор (1), исток которого соединен с первой (2) шиной источника питания, затвор - с источником входного напряжения (3), а сток - с истоком первого (4) выходного транзистора и инвертирующим входом вспомогательного усилителя напряжения (5), выход которого подключен к затвору первого (4) выходного транзистора, а неинвертирующий вход связан с источником опорного напряжения (6), цепь нагрузки (7), включенную между выходом устройства (8) и второй (9) шиной источника питания, отличающийся тем, что сток первого (4) выходного транзистора соединен с истоком дополнительного транзистора (10), сток которого подключен к выходу устройства (8), а затвор связан со входом дополнительного неинвертирующего усилителя тока (11), выход которого соединен с истоком первого (4) выходного транзистора или истоком дополнительного транзистора (10), причем между второй (9) шиной источника питания и входом дополнительного неинвертирующего усилителя тока (11) включен дополнительный токостабилизирующий двухполюсник (12).

Описание изобретения к патенту

Изобретение относится к области радиотехники и связи и может быть использовано в качестве устройства усиления аналоговых сигналов в структуре аналоговых микросхем различного функционального назначения (например, широкополосных и избирательных усилителях ВЧ и СВЧ диапазонов).

В современной микроэлектронике находят широкое применение классические каскодные усилители (КУ) на полевых транзисторах [1-11], работающие в широком диапазоне частот.

Наиболее близким по технической сущности к заявляемому устройству является КУ фиг.1, соответствующий патентам US 5.039.954, fig.2, US 6.476.680, fig.6.

Существенный недостаток КУ-прототипа по патенту US 6.476.680 fig6, архитектура которого присутствует также во многих других каскодных усилителях [1-11], состоит в том, что он имеет сравнительно небольшие значения верхней граничной частоты (fгр) коэффициента усиления по напряжению, которая определяется паразитными емкостями затвор-сток выходных полевых транзисторов.

Основная задача предполагаемого изобретения состоит в повышении (в 20-70 раз) верхней граничной частоты fгp коэффициента усиления по напряжению КУ схемотехническими методами - без изменения; геометрии и технологии производства полупроводниковых компонентов. Это позволяет существенно расширить диапазон рабочих частот КУ или уменьшить общее энергопотребление в сравнении с классической схемотехникой.

Поставленная задача решается тем, что в широкополосном каскодном усилителе фиг.1, содержащем входной транзистор 1, исток которого соединен с первой 2 шиной источника питания, затвор - с источником входного напряжения 3, а сток - с истоком первого 4 выходного транзистора и инвертирующим входом вспомогательного усилителя напряжения 5, выход которого подключен к затвору первого 4 выходного транзистора, а неинвертирующий вход связан с источником опорного напряжения 6, цепь нагрузки 7, включенную между выходом устройства 8 и второй 9 шиной источника питания, предусмотрены новые элементы и связи - сток первого 4 выходного транзистора соединен с истоком дополнительного транзистора 10, сток которого подключен к выходу устройства 8, а затвор связан со входом дополнительного неинвертирующего усилителя тока 11, выход которого соединен с истоком первого 4 выходного транзистора или истоком дополнительного транзистора 10, причем между второй 9 шиной источника питания и входом дополнительного неинвертирующего усилителя тока 11 включен дополнительный токостабилизирующий двухполюсник 12.

Схема усилителя-прототипа показана на чертеже фиг.1. На чертеже фиг.2 представлена схема заявляемого устройства в соответствии с формулой изобретения.

На чертеже фиг.3 приведена схема КУ-прототипа, в котором в качестве цепи нагрузки 7 используется такая же схема как КУ фиг.1, но реализованная на транзисторах другого типа проводимости.

На чертеже фиг.4 показана практическая реализация каскодного усилителя фиг.3 на полевых транзисторах.

На чертеже фиг.5 приведен пример построения заявляемого каскодного усилителя с цепью нагрузки 7, реализованной в соответствии с фиг.2 на полевых транзисторах противоположного типа проводимости.

На чертеже фиг.6. представлена схема КУ фиг.4 в среде Cadence Virtuoso на моделях интегральных SiGe транзисторов с указанием режимов работы.

На чертеже фиг.7 представлена схема заявляемого устройства фиг.2 с цепью нагрузки 7, реализованной на транзисторах противоположного типа проводимости на основе такой же схемы как фиг.2 в среде Cadence Virtuoso с указанием режимов работы.

На чертеже фиг.8 приведены амплитудно-частотные характеристики коэффициента усиления по напряжению КУ-прототипа фиг.6 и заявляемого устройства фиг.7, а на чертеже фиг.9 - фазочастотные характеристики КУ фиг.6 и заявляемого устройства фиг.7.

На чертеже фиг.10 приведена таблица основных параметров сравниваемых КУ-прототипа (фиг 6) и заявляемого КУ (фиг.7), где обозначено:

К - коэффициент усиления по напряжению [дБ];

fгр - верхняя граничная частота КУ (по уровню - 3 дБ);

широкополосный каскодный усилитель, патент № 2513486 гр - фазовый сдвиг КУ на частоте fгр ;

К*fгр - площадь усиления КУ;

Iп - потребляемый от источника питания статический ток;

Eп - напряжение питания;

широкополосный каскодный усилитель, патент № 2513486 - обобщенный показатель качества КУ

широкополосный каскодный усилитель, патент № 2513486 .

Причем в табл.1 фиг.10 параметры К* и К связаны формулой: 201g K*=К.

Широкополосный каскодный усилитель фиг.2 содержит входной транзистор 1, исток которого соединен с первой 2 шиной источника питания, затвор - с источником входного напряжения 3, а сток - с истоком первого 4 выходного транзистора и инвертирующим входом вспомогательного усилителя напряжения 5, выход которого подключен к затвору первого 4 выходного транзистора, а неинвертирующий вход связан с источником опорного напряжения 6, цепь нагрузки 7, включенную между выходом устройства 8 и второй 9 шиной источника питания. Сток первого 4 выходного транзистора соединен с истоком дополнительного транзистора 10, сток которого подключен к выходу устройства 8, а затвор связан со входом дополнительного неинвертирующего усилителя тока 11, выход которого соединен с истоком первого 4 выходного транзистора или истоком дополнительного транзистора 10, причем между второй 9 шиной источника питания и входом дополнительного неинвертирующего усилителя тока 11 включен дополнительный токостабилизирующий двухполюсник 12. Источник входного напряжения 3 имеет, в частном случае, эдс eвх и постоянную составляющую Eвх , устанавливающую статический режим транзистора 1.

В схеме КУ-прототипа фиг.3 используется цепь нагрузки 7, реализованная на транзисторах 1, 4, по схеме, которая соответствует фиг.2.

На чертеже фиг.4 приведена схема фиг.3 с конкретным выполнением вспомогательного усилителя 5 (элементы 13, 14, 15) и вспомогательного усилителя 5 (элементы 16, 17, 18). При этом для установления статического режима транзисторов схемы используются транзисторы 19, 20, 21, 22, 23, 24. Входной сигнал в схеме фиг.4 может подаваться по цепи затвора транзистора 1 (Вход Вх* , элементы 25, 26) или в исток транзистора 1.

Практическая схема КУ фиг.3, в котором цепь нагрузки 7 реализована по такой же архитектуре как и фиг.2, но на транзисторах противоположной проводимости, приведена на чертеже фиг.5, где дополнительный неинвертирующий усилитель тока 11 базовой схемы (фиг.2) выполнен на транзисторах 30, 31, 32, а аналогичный дополнительный неинвертирующий усилитель тока 11 цепи нагрузки 7 - на элементах 29, 28, 27.

Рассмотрим работу предлагаемой схемы каскодного усилителя с расширенным диапазоном рабочих частот фиг.2.

Входной сигнал eвх=uвх подается от источника входного напряжения 3 между затвором и истоком входного транзистора 1. При этом возникает приращение тока стока этого транзистора и соответственно приращение тока стока транзистора 10, которое приводит к изменению напряжения на нагрузке 7 и соответственно на выходе 8 устройства.

«Трехэтажная» (телескопическая) структура каскода и использование вспомогательного усилителя напряжения 5 позволяют существенно повысить выходное сопротивление каскода относительно выхода 8 и его коэффициент усиления по напряжению. При этом вспомогательный усилитель напряжения 5 не компенсирует влияние паразитной (доминирующей) емкости сток-затвор транзистора 10, через которую с выхода устройства 8 в цепь затвора транзистора 10 протекает паразитный переменный ток. Использование дополнительного неинвертирующего усилителя тока 11 позволяет выделить этот ток и «направить» его через исток транзистора 4 (или через исток транзистора 10) обратно в выходную цепь каскода 8, осуществляя тем самым собственную компенсацию влияния емкости сток-затвор транзистора 10.

При наличии комплементарного базиса полевых транзисторов в используемом технологическом процессе производства нагрузки каскадов выполняются, как правило, в виде активных (динамических) нагрузок на транзисторах с противоположным типом канала. В этом случае, каскод-прототип (фиг.1) с нагрузкой 7 в виде аналогичного каскода имеет вид, показанный на фиг.3. Передаточная функция по напряжению такого каскада определяется выражением

широкополосный каскодный усилитель, патент № 2513486

где Т - эквивалентная постоянная времени каскада фиг.1,

К - номинальный (низкочастотный) коэффициент усиления по напряжению, который при равных коэффициентах усиления Kп1п2 вспомогательных усилителей напряжения 5, 5 (элементы 5, 5 на чертеже фиг.3) и приблизительно равных статических коэффициентах усиления транзисторов 4 и 4 * с каналами n- и p-типа (µn=широкополосный каскодный усилитель, патент № 2513486 µp=µ) определяется соотношением

широкополосный каскодный усилитель, патент № 2513486 .

Причем постоянная времени Т определяется суммой двух составляющих

широкополосный каскодный усилитель, патент № 2513486

где широкополосный каскодный усилитель, патент № 2513486 в1 - постоянная времени, образованная выходными емкостями (сток-исток) транзисторов;

широкополосный каскодный усилитель, патент № 2513486 в2 - постоянная времени, образованная проходными паразитными емкостями транзисторов 4 и 4.

В общем случае для рассматриваемого КУ:

широкополосный каскодный усилитель, патент № 2513486

а вторая постоянная времени

широкополосный каскодный усилитель, патент № 2513486

где Cj, Sj, R ij - соответственно выходная емкость, крутизна и выходное дифференциальное сопротивление j-го транзистора;

S=S10=S10*;

СП4 , СП4* - проходные емкости затвор-сток транзисторов 4, 4*. Из соотношений (1), (2) следует, что чувствительности основных параметров схемы

широкополосный каскодный усилитель, патент № 2513486

где fгр - верхняя граничная частота каскада (по уровню - 3 дБ).

При этом параметрические чувствительности постоянных времени широкополосный каскодный усилитель, патент № 2513486 в1 и Тв2, как видно из соотношения (3), определяются следующими выражениями

широкополосный каскодный усилитель, патент № 2513486

широкополосный каскодный усилитель, патент № 2513486

широкополосный каскодный усилитель, патент № 2513486

Аналогично, как это следует из (4), определяются парциальные чувствительности второй постоянной времени

широкополосный каскодный усилитель, патент № 2513486

Полученные соотношения показывают, что действие показанных на чертеже фиг.3 компенсирующих контуров отрицательной обратной связи (5, 5*) уменьшает параметрические чувствительности верхней граничной частоты к нестабильности параметров активных элементов. В конечном итоге это позволяет повысить общую стабильность не только верхней граничной частоты, но и обеспечить запас устойчивости всего усилителя и (или) расширить диапазон рабочих частот. Однако, как это видно из соотношения (9), действие отрицательной обратной связи не распространяется на уменьшение влияния проходных емкостей транзисторов 4 и 4* П4, CП4*) на верхнюю граничную частоту f гр каскада и эквивалентную постоянную времени (2).

В заявляемом (фиг.2) каскаде дополнительный контур обратной связи (усилитель тока 11) направлен на уменьшение влияния указанных паразитных емкостей на fгр. Так, в его реализации по схеме фиг.5, эквивалентная постоянная времени определяется соотношением

широкополосный каскодный усилитель, патент № 2513486

где Kiширокополосный каскодный усилитель, патент № 2513486 1 - коэффициент усиления по току усилителя тока 11 (11 *);

широкополосный каскодный усилитель, патент № 2513486 вj=CПj/Sj - постоянная времени j-го транзистора, охваченного указанным компенсирующим контуром (11, 11*).

Именно поэтому возникновение разностного члена в формуле (10) уменьшает эквивалентную постоянную времени Т до желаемого уровня, определяющего верхнюю граничную частоту каскада. Это свойство дополнительного контура компенсирующей обратной связи можно использовать в двух направлениях. Во-первых, как это показано на чертеже фиг.5, применение усилителя тока 11 с Ki=1 исключает влияние на fгр проходных емкостей транзисторов 10 (и 10*). Этим свойством объясняется эффект собственной компенсации влияния указанных параметров на эквивалентную постоянную времени каскада (10). Во-вторых, при выполнении условия Ki>1, как видно из (10), наблюдается взаимная компенсация влияния проходных и выходных паразитных емкостей транзисторов и соответствующих постоянных времени. В этом случае, как видно из (10), происходит увеличение чувствительности (5), а также чувствительности

широкополосный каскодный усилитель, патент № 2513486

Поэтому согласно (10) парциальные чувствительности

широкополосный каскодный усилитель, патент № 2513486

определяют дополнительные источники погрешности верхней граничной частоты каскада.

Таким образом, при решении практических задач необходимо определить погрешности реализации граничной частоты и знать относительные изменения набора малосигнальных (S, Ri) и паразитных параметров используемых активных элементов. Учитывая, что контуры обратных связей (фиг.3), компенсирующие влияние Ri транзисторов на коэффициент усиления каскада, уменьшают влияние выходных емкостей транзисторов на верхнюю граничную частоту (соотношения (6)-(8)), доминирующим фактором являются проходные (сток-затвор) емкости CПj,

транзисторов образующих взаимную динамическую нагрузку (10 и 10* на фиг.3). Именно поэтому общую нестабильность граничной частоты и соответствующего коэффициента передаточной функции каскада (1) можно оценить из следующего соотношения

широкополосный каскодный усилитель, патент № 2513486 ,

где широкополосный каскодный усилитель, патент № 2513486 , широкополосный каскодный усилитель, патент № 2513486 , широкополосный каскодный усилитель, патент № 2513486 , широкополосный каскодный усилитель, патент № 2513486 .

Приведенная оценка позволяет выбрать минимально допустимое значение Tmin каскада с динамической нагрузкой, приводящее к максимальной верхней граничной частоте.

Для подтверждения приведенных теоретических утверждений проведено сравнительное моделирование в программной среде Cadence Virtuoso на транзисторах (модели nmos, pmos) техпроцесса SGB25 VD (IHP, Германия) со следующими геометриями: nWidth=3,70 и, pWidth=4,82 и, nLength = pLength = 240 n.

Как видно из чертежей фиг.1 и фиг.2, в основе КУ-прототипа лежит структура двойного каскода, а в основе заявляемого устройства - тройного, вследствие чего его низкочастотный коэффициент усиления оказывается выше, чем у прототипа. Для обеспечения объективности сравнения результатов моделирования разница между этими коэффициентами устранена за счет дополнения каскода-прототипа до структуры тройного каскода фиг.4, что не противоречит патенту-прототипу фиг.1. В качестве нагрузки 7 каскода используется аналогичный каскод на транзисторах с каналом противоположного типа проводимости.

На чертеже фиг.4 транзистор 10 дополняет структуру прототипа до тройного каскода, а транзисторы 13, 14, нагруженные на сток транзистора 15, выполняют роль вспомогательного усилителя напряжения 5 (фиг.1). Аналогичную функцию нагрузки выполняют транзисторы 10*, 16; 17, 18 соответственно. Транзисторы 19-24 обеспечивают статический режим работы схемы.

Принципиальная схема (фиг.5) каскада на базе заявляемого устройства отличается от описанной выше тем, что в основной и нагрузочный каскод (7) добавлены дополнительные неинвертирующие усилители тока 11 (фиг.2), реализованные на транзисторах 27, 28 и 30, 31 соответственно. Эти цепи так же взаимно выполняют функцию токостабилизирующего двухполюсника 12 (фиг.2). Такое комбинирование этих цепей компенсации основного и нагрузочного каскодов позволяет уменьшить компонентные затраты схемы, уменьшить потребляемый ток, упростить трансляцию режимов работы, несколько повысить уровень компенсации, что не противоречит базовой структуре фиг.2.

Результаты моделирования описанных принципиальных схем (фиг.4 и фиг.5) представлены на чертежах фиг.6-9 и сведены в таблицу 1 (фиг.10), из которой видно, что предлагаемые схемотехнические решения качественно улучшают частотные характеристики устройства. Фазовый сдвиг широкополосный каскодный усилитель, патент № 2513486 гр (фиг.9, таблица 1) на верхней граничной частоте fгр показывает, что при этом передаточная функция каскада в диапазоне рабочих частот соответствует функции первого порядка. Это упрощает последующую фазовую коррекцию схемы. Кроме того, обобщенный показатель качества широкополосный каскодный усилитель, патент № 2513486 показывает, что широкополосность схемы обеспечивается качественно меньшим потребляемым током при фиксированном напряжении питания.

Данные теоретические выводы подтверждают графики фиг.8-фиг.9. Таким образом, заявляемое схемотехническое решение КУ характеризуется более высокими значениями верхней граничной частоты (1,139 МГц вместо 15 кГц) и в 50 раз лучшими величинами обобщенного показателя качества широкополосный каскодный усилитель, патент № 2513486 .

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патентная заявка US 2008/0231369, fig.1.

2. Патентная заявка WO 2004/030207.

3. Патент US 7.847.636, fig.5.

4. Патент US 7.737.790, fig.3.

5. Патент US7.786.807.

6. Патентная заявка US 2007/0296501.

7. Патент RU 217823 5.

8. Патент RU 2176850.

9. Патент US5.039.954.

10. Патент US 6.476.680, fig.6.

11. Патент RU 2325664.

Класс H03F3/45 дифференциальные усилители

избирательный усилитель с расширенным частотным диапазоном -  патент 2525744 (20.08.2014)
мультидифференциальный операционный усилитель -  патент 2523124 (20.07.2014)
управляемый избирательный усилитель -  патент 2520418 (27.06.2014)
составной транзистор -  патент 2519563 (10.06.2014)
избирательный усилитель -  патент 2519558 (10.06.2014)
избирательный усилитель -  патент 2519446 (10.06.2014)
гибридный дифференциальный усилитель -  патент 2519373 (10.06.2014)
управляемый избирательный усилитель -  патент 2519035 (10.06.2014)
инструментальный усилитель -  патент 2519032 (10.06.2014)
дифференциальный операционный усилитель с пассивным параллельным каналом -  патент 2517699 (27.05.2014)

Класс H03F3/00 Усилители, имеющие в качестве усилительных элементов только электронные или только полупроводниковые приборы

Наверх